metadata
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_file: model.pkl
widget:
structuredData:
Fedu:
- 3
- 3
- 3
Fjob:
- other
- other
- services
G1:
- 12
- 13
- 8
G2:
- 13
- 14
- 7
G3:
- 12
- 14
- 0
Medu:
- 3
- 2
- 1
Mjob:
- services
- other
- at_home
Pstatus:
- T
- T
- T
Walc:
- 2
- 1
- 1
absences:
- 2
- 0
- 0
activities:
- 'yes'
- 'no'
- 'yes'
address:
- U
- U
- U
age:
- 16
- 16
- 16
failures:
- 0
- 0
- 3
famrel:
- 4
- 5
- 4
famsize:
- GT3
- GT3
- GT3
famsup:
- 'no'
- 'no'
- 'no'
freetime:
- 2
- 3
- 3
goout:
- 3
- 3
- 5
guardian:
- mother
- father
- mother
health:
- 3
- 3
- 3
higher:
- 'yes'
- 'yes'
- 'yes'
internet:
- 'yes'
- 'yes'
- 'yes'
nursery:
- 'yes'
- 'yes'
- 'no'
paid:
- 'yes'
- 'no'
- 'no'
reason:
- home
- home
- home
romantic:
- 'yes'
- 'no'
- 'yes'
school:
- GP
- GP
- GP
schoolsup:
- 'no'
- 'no'
- 'no'
sex:
- M
- M
- F
studytime:
- 2
- 1
- 2
traveltime:
- 1
- 2
- 1
Model description
This is an XGBoost model trained to predict daily alcohol consumption of students.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...))] |
verbose | False |
onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
xgbregressor | XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...) |
onehotencoder__categories | auto |
onehotencoder__drop | |
onehotencoder__dtype | <class 'numpy.float64'> |
onehotencoder__handle_unknown | ignore |
onehotencoder__sparse | False |
xgbregressor__objective | reg:squarederror |
xgbregressor__base_score | |
xgbregressor__booster | |
xgbregressor__callbacks | |
xgbregressor__colsample_bylevel | |
xgbregressor__colsample_bynode | |
xgbregressor__colsample_bytree | |
xgbregressor__early_stopping_rounds | |
xgbregressor__enable_categorical | False |
xgbregressor__eval_metric | |
xgbregressor__feature_types | |
xgbregressor__gamma | |
xgbregressor__gpu_id | |
xgbregressor__grow_policy | |
xgbregressor__importance_type | |
xgbregressor__interaction_constraints | |
xgbregressor__learning_rate | |
xgbregressor__max_bin | |
xgbregressor__max_cat_threshold | |
xgbregressor__max_cat_to_onehot | |
xgbregressor__max_delta_step | |
xgbregressor__max_depth | 5 |
xgbregressor__max_leaves | |
xgbregressor__min_child_weight | |
xgbregressor__missing | nan |
xgbregressor__monotone_constraints | |
xgbregressor__n_estimators | 100 |
xgbregressor__n_jobs | |
xgbregressor__num_parallel_tree | |
xgbregressor__predictor | |
xgbregressor__random_state | |
xgbregressor__reg_alpha | |
xgbregressor__reg_lambda | |
xgbregressor__sampling_method | |
xgbregressor__scale_pos_weight | |
xgbregressor__subsample | |
xgbregressor__tree_method | |
xgbregressor__validate_parameters | |
xgbregressor__verbosity |
Model Plot
The model plot is below.
Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])
OneHotEncoder(handle_unknown='ignore', sparse=False)
XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, gpu_id=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=5, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...)
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|---|
R squared | 0.382 |
Mean Squared Error | 0.43055 |
Feature Importance Plot
Explained as: feature importances
XGBoost feature importances; values are numbers 0 <= x <= 1;all values sum to 1.
Weight | Feature |
---|---|
0.3592 | x26_5 |
0.0499 | x26_1 |
0.0383 | x26_4 |
0.0325 | x23_3 |
0.0256 | x28_0 |
0.0229 | x30_10 |
0.0222 | x8_health |
0.0203 | x29_10 |
0.0200 | x14_2 |
0.0200 | x7_3 |
0.0199 | x31_16 |
0.0179 | x28_8 |
0.0155 | x28_6 |
0.0155 | x11_mother |
0.0149 | x29_12 |
0.0145 | x26_2 |
0.0138 | x21_no |
0.0112 | x6_2 |
0.0098 | x14_0 |
0.0092 | x18_no |
… 161 more … |