layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3066
- Precision: 0.9289
- Recall: 0.9394
- F1: 0.9341
- Accuracy: 0.9393
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 4.17 | 250 | 0.9691 | 0.7365 | 0.7867 | 0.7608 | 0.7992 |
1.3706 | 8.33 | 500 | 0.5325 | 0.8645 | 0.8885 | 0.8763 | 0.8858 |
1.3706 | 12.5 | 750 | 0.3943 | 0.8939 | 0.9139 | 0.9038 | 0.9151 |
0.3211 | 16.67 | 1000 | 0.3364 | 0.9209 | 0.9319 | 0.9263 | 0.9342 |
0.3211 | 20.83 | 1250 | 0.3217 | 0.9246 | 0.9364 | 0.9305 | 0.9346 |
0.1405 | 25.0 | 1500 | 0.3100 | 0.9296 | 0.9394 | 0.9345 | 0.9355 |
0.1405 | 29.17 | 1750 | 0.3113 | 0.9275 | 0.9386 | 0.9330 | 0.9363 |
0.076 | 33.33 | 2000 | 0.3183 | 0.9280 | 0.9364 | 0.9322 | 0.9351 |
0.076 | 37.5 | 2250 | 0.3125 | 0.9211 | 0.9356 | 0.9283 | 0.9363 |
0.0549 | 41.67 | 2500 | 0.3066 | 0.9289 | 0.9394 | 0.9341 | 0.9393 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- Precision on cord-layoutlmv3self-reported0.929
- Recall on cord-layoutlmv3self-reported0.939
- F1 on cord-layoutlmv3self-reported0.934
- Accuracy on cord-layoutlmv3self-reported0.939