Description
- The dataset consists of 148 Filipino storytelling books, 5,005 total sentences, 45,792 total tokens, and 5,646 unique tokens.
- This NER model only supports the Filipino language and does not include proper nouns, verbs, adjectives, and adverbs as of the moment
- The input must undergo preprocessing. Soon I will upload the code to GitHub for preprocessing the input
- To replicate the preprocessed input use this example as a guide
- Input: "May umaapoy na bahay "
- Preprocessed Input: "apoy bahay"
bert-tagalog-base-uncased-ner-v1
This model is a fine-tuned version of jcblaise/bert-tagalog-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2824
- Precision: 0.9091
- Recall: 0.8988
- F1: 0.9039
- Accuracy: 0.9488
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 205 | 0.5311 | 0.6465 | 0.5458 | 0.5919 | 0.8387 |
No log | 2.0 | 410 | 0.3052 | 0.7736 | 0.7811 | 0.7774 | 0.9110 |
0.4693 | 3.0 | 615 | 0.2531 | 0.8493 | 0.8363 | 0.8427 | 0.9319 |
0.4693 | 4.0 | 820 | 0.2384 | 0.8755 | 0.8715 | 0.8735 | 0.9402 |
0.064 | 5.0 | 1025 | 0.2671 | 0.8909 | 0.8823 | 0.8866 | 0.9435 |
0.064 | 6.0 | 1230 | 0.2527 | 0.8864 | 0.8920 | 0.8892 | 0.9459 |
0.064 | 7.0 | 1435 | 0.2708 | 0.9088 | 0.9011 | 0.9049 | 0.9491 |
0.0111 | 8.0 | 1640 | 0.2733 | 0.8992 | 0.8977 | 0.8984 | 0.9490 |
0.0111 | 9.0 | 1845 | 0.2765 | 0.8991 | 0.8965 | 0.8978 | 0.9485 |
0.0037 | 10.0 | 2050 | 0.2824 | 0.9091 | 0.8988 | 0.9039 | 0.9488 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.