File size: 7,477 Bytes
3351660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:SCVI
- scvi_version:1.2.0
- anndata_version:0.11.1
- modality:rna
- tissue:heart
- annotated:True
---
ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
latent space, integrate technical batches and impute dropouts.
The learned low-dimensional latent representation of the data can be used for visualization and
clustering.
scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
- See our original manuscript for further details of the model:
[scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
to leverage pre-trained models.
This model can be used for fine tuning on new data using our Arches framework:
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
# Model Description
Combined single cell and single nuclei RNA-Seq data of 485K cardiac cells with annotations.
# Metrics
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
<details>
<summary><strong>Coefficient of variation</strong></summary>
The cell-wise coefficient of variation summarizes how well variation between different cells is
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
, we would recommend not to use generated data for downstream analysis, while the generated latent
space might still be useful for analysis.
**Cell-wise Coefficient of Variation**:
| Metric | Training Value | Validation Value |
|-------------------------|----------------|------------------|
| Mean Absolute Error | 1.14 | 1.16 |
| Pearson Correlation | 0.65 | 0.64 |
| Spearman Correlation | 0.70 | 0.71 |
| R² (R-Squared) | 0.12 | 0.14 |
The gene-wise coefficient of variation summarizes how well variation between different genes is
preserved by the generated model expression. This value is usually quite high.
**Gene-wise Coefficient of Variation**:
| Metric | Training Value |
|-------------------------|----------------|
| Mean Absolute Error | 2.68 |
| Pearson Correlation | 0.85 |
| Spearman Correlation | 0.95 |
| R² (R-Squared) | -0.01 |
</details>
<details>
<summary><strong>Differential expression metric</strong></summary>
The differential expression metric provides a summary of the differential expression analysis
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
cell-type.
**Differential expression**:
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
| --- | --- | --- | --- | --- | --- | --- | --- |
| Ventricular_Cardiomyocyte | 0.94 | 1.19 | 0.65 | 0.96 | 0.29 | 0.91 | 5307.00 |
| Endothelial | 0.97 | 0.90 | 0.63 | 0.91 | 0.26 | 0.94 | 4109.00 |
| Pericytes | 0.92 | 1.06 | 0.40 | 0.85 | 0.21 | 0.87 | 3204.00 |
| Fibroblast | 0.94 | 1.28 | 0.60 | 0.93 | 0.35 | 0.90 | 2446.00 |
| Atrial_Cardiomyocyte | 0.93 | 2.31 | 0.55 | 0.87 | 0.36 | 0.84 | 1009.00 |
| Myeloid | 0.88 | 2.19 | 0.53 | 0.87 | 0.40 | 0.90 | 957.00 |
| Lymphoid | 0.90 | 3.20 | 0.46 | 0.77 | 0.31 | 0.85 | 653.00 |
| Smooth_muscle_cells | 0.85 | 2.90 | 0.53 | 0.74 | 0.33 | 0.80 | 641.00 |
| Neuronal | 0.43 | 5.10 | 0.48 | 0.48 | 0.38 | 0.65 | 153.00 |
| Adipocytes | 0.84 | 4.31 | 0.55 | 0.74 | 0.51 | 0.80 | 145.00 |
| Mesothelial | 0.37 | 9.51 | 0.34 | 0.28 | 0.40 | 0.65 | 17.00 |
</details>
# Model Properties
We provide here key parameters used to setup and train the model.
<details>
<summary><strong>Model Parameters</strong></summary>
These provide the settings to setup the original model:
```json
{
"n_hidden": 128,
"n_latent": 10,
"n_layers": 1,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "zinb",
"latent_distribution": "normal"
}
```
</details>
<details>
<summary><strong>Setup Data Arguments</strong></summary>
Arguments passed to setup_anndata of the original model:
```json
{
"layer": "counts",
"batch_key": null,
"labels_key": null,
"size_factor_key": null,
"categorical_covariate_keys": [
"cell_source",
"donor"
],
"continuous_covariate_keys": [
"percent_mito",
"percent_ribo"
]
}
```
</details>
<details>
<summary><strong>Data Registry</strong></summary>
Registry elements for AnnData manager:
| Registry Key | scvi-tools Location |
|------------------------|--------------------------------------------|
| X | adata.layers['counts'] |
| batch | adata.obs['_scvi_batch'] |
| extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] |
| extra_continuous_covs | adata.obsm['_scvi_extra_continuous_covs'] |
| labels | adata.obs['_scvi_labels'] |
| latent_qzm | adata.obsm['scvi_latent_qzm'] |
| latent_qzv | adata.obsm['scvi_latent_qzv'] |
| minify_type | adata.uns['_scvi_adata_minify_type'] |
| observed_lib_size | adata.obs['observed_lib_size'] |
- **Data is Minified**: False
</details>
<details>
<summary><strong>Summary Statistics</strong></summary>
| Summary Stat Key | Value |
|--------------------------|-------|
| n_batch | 1 |
| n_cells | 18641 |
| n_extra_categorical_covs | 2 |
| n_extra_continuous_covs | 2 |
| n_labels | 1 |
| n_latent_qzm | 10 |
| n_latent_qzv | 10 |
| n_vars | 1200 |
</details>
<details>
<summary><strong>Training</strong></summary>
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
sure to provide this field if you want users to be able to access your training data. See the
scvi-tools documentation for details. -->
**Training data url**: Not provided by uploader
If provided by the original uploader, for those interested in understanding or replicating the
training process, the code is available at the link below.
**Training Code URL**: Not provided by uploader
</details>
# References
Kazumasa Kanemaru, James Cranley, Daniele Muraro, Antonio M. A. Miranda, Siew Yen Ho, Anna Wilbrey-Clark, Jan Patrick Pett, Krzysztof Polanski, Laura Richardson, Monika Litvinukova, Natsuhiko Kumasaka, Yue Qin, Zuzanna Jablonska, Claudia I. Semprich, Lukas Mach, Monika Dabrowska, Nathan Richoz, Liam Bolt, Lira Mamanova, Rakeshlal Kapuge, Sam N. Barnett, Shani Perera, Carlos Talavera-López, Ilaria Mulas, Krishnaa T. Mahbubani, Liz Tuck, Lu Wang, Margaret M. Huang, Martin Prete, Sophie Pritchard, John Dark, Kourosh Saeb-Parsy, Minal Patel, Menna R. Clatworthy, Norbert Hübner, Rasheda A. Chowdhury, Michela Noseda & Sarah A. Teichmann. Spatially resolved multiomics of human cardiac niches. Nature, July 2023. doi:10.1038/s41586-023-06311-1.
|