File size: 7,438 Bytes
3351660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0775a25
 
afd3388
0775a25
3351660
 
 
 
 
 
 
 
0775a25
 
1f653dc
0775a25
3351660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0775a25
 
 
 
 
 
 
 
 
 
 
3351660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f653dc
 
 
 
 
 
 
 
 
 
 
3351660
 
 
 
 
 
 
 
1f653dc
3351660
1f653dc
 
 
 
 
 
 
 
3351660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:SCVI
- scvi_version:1.2.0
- anndata_version:0.11.1
- modality:rna
- tissue:heart
- annotated:True
---


ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
latent space, integrate technical batches and impute dropouts.
The learned low-dimensional latent representation of the data can be used for visualization and
clustering.

scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).

- See our original manuscript for further details of the model:
[scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
to leverage pre-trained models.

This model can be used for fine tuning on new data using our Arches framework:
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).


# Model Description

Combined single cell and single nuclei RNA-Seq data of 485K cardiac cells with annotations.

# Metrics

We provide here key performance metrics for the uploaded model, if provided by the data uploader.

<details>
<summary><strong>Coefficient of variation</strong></summary>

The cell-wise coefficient of variation summarizes how well variation between different cells is
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
, we would recommend not to use generated data for downstream analysis, while the generated latent
space might still be useful for analysis.

**Cell-wise Coefficient of Variation**:

| Metric                  | Training Value | Validation Value |
|-------------------------|----------------|------------------|
| Mean Absolute Error | 0.89  | 0.96           |
| Pearson Correlation | 0.79  | 0.76  |
| Spearman Correlation | 0.80 | 0.79  |
| R² (R-Squared) | 0.42  | 0.33      |

The gene-wise coefficient of variation summarizes how well variation between different genes is
preserved by the generated model expression. This value is usually quite high.

**Gene-wise Coefficient of Variation**:

| Metric                  | Training Value |
|-------------------------|----------------|
| Mean Absolute Error | 1.41   |
| Pearson Correlation | 0.95  |
| Spearman Correlation | 0.99 |
| R² (R-Squared) | 0.91  |

</details>

<details>
<summary><strong>Differential expression metric</strong></summary>

The differential expression metric provides a summary of the differential expression analysis
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
cell-type.

**Differential expression**:

| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
| --- | --- | --- | --- | --- | --- | --- | --- |
| Ventricular_Cardiomyocyte | 0.96 | 0.83 | 0.82 | 0.98 | 0.28 | 0.15 | 5307.00 |
| Endothelial | 0.94 | 0.65 | 0.81 | 0.96 | 0.13 | 0.12 | 4109.00 |
| Pericytes | 0.96 | 0.91 | 0.66 | 0.92 | 0.30 | 0.34 | 3204.00 |
| Fibroblast | 0.98 | 0.89 | 0.77 | 0.96 | 0.33 | 0.37 | 2446.00 |
| Atrial_Cardiomyocyte | 0.98 | 1.42 | 0.75 | 0.94 | 0.32 | 0.36 | 1009.00 |
| Myeloid | 0.94 | 1.45 | 0.76 | 0.94 | 0.07 | 0.10 | 957.00 |
| Lymphoid | 0.96 | 2.33 | 0.67 | 0.88 | 0.04 | 0.06 | 653.00 |
| Smooth_muscle_cells | 0.96 | 2.52 | 0.63 | 0.84 | 0.22 | 0.21 | 641.00 |
| Neuronal | 0.89 | 3.99 | 0.60 | 0.68 | 0.27 | 0.08 | 153.00 |
| Adipocytes | 0.92 | 2.94 | 0.69 | 0.85 | 0.23 | 0.17 | 145.00 |
| Mesothelial | 0.58 | 6.82 | 0.52 | 0.49 | 0.37 | 0.06 | 17.00 |

</details>

# Model Properties

We provide here key parameters used to setup and train the model.

<details>
<summary><strong>Model Parameters</strong></summary>

These provide the settings to setup the original model:
```json
{
    "n_hidden": 128,
    "n_latent": 10,
    "n_layers": 1,
    "dropout_rate": 0.1,
    "dispersion": "gene",
    "gene_likelihood": "zinb",
    "latent_distribution": "normal"
}
```

</details>

<details>
<summary><strong>Setup Data Arguments</strong></summary>

Arguments passed to setup_anndata of the original model:
```json
{
    "layer": "counts",
    "batch_key": null,
    "labels_key": null,
    "size_factor_key": null,
    "categorical_covariate_keys": [
        "cell_source",
        "donor"
    ],
    "continuous_covariate_keys": [
        "percent_mito",
        "percent_ribo"
    ]
}
```

</details>

<details>
<summary><strong>Data Registry</strong></summary>

Registry elements for AnnData manager:
| Registry Key             | scvi-tools Location                  |
|--------------------------|--------------------------------------|
| X                         | adata.layers['counts']               |
| batch                     | adata.obs['_scvi_batch']             |
| extra_categorical_covs    | adata.obsm['_scvi_extra_categorical_covs'] |
| extra_continuous_covs     | adata.obsm['_scvi_extra_continuous_covs'] |
| labels                    | adata.obs['_scvi_labels']            |
| latent_qzm                | adata.obsm['scvi_latent_qzm']        |
| latent_qzv                | adata.obsm['scvi_latent_qzv']        |
| minify_type               | adata.uns['_scvi_adata_minify_type'] |
| observed_lib_size         | adata.obs['observed_lib_size']       |

- **Data is Minified**: False

</details>

<details>
<summary><strong>Summary Statistics</strong></summary>

| Summary Stat Key          | Value |
|--------------------------|-------|
| n_batch                   | 1 |
| n_cells                   | 18641 |
| n_extra_categorical_covs  | 2 |
| n_extra_continuous_covs   | 2 |
| n_labels                  | 1 |
| n_latent_qzm              | 10 |
| n_latent_qzv              | 10 |
| n_vars                    | 1200 |

</details>


<details>
<summary><strong>Training</strong></summary>

<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
sure to provide this field if you want users to be able to access your training data. See the
scvi-tools documentation for details. -->
**Training data url**: Not provided by uploader

If provided by the original uploader, for those interested in understanding or replicating the
training process, the code is available at the link below.

**Training Code URL**: Not provided by uploader

</details>


# References

Kazumasa Kanemaru, James Cranley, Daniele Muraro, Antonio M. A. Miranda, Siew Yen Ho, Anna Wilbrey-Clark, Jan Patrick Pett, Krzysztof Polanski, Laura Richardson, Monika Litvinukova, Natsuhiko Kumasaka, Yue Qin, Zuzanna Jablonska, Claudia I. Semprich, Lukas Mach, Monika Dabrowska, Nathan Richoz, Liam Bolt, Lira Mamanova, Rakeshlal Kapuge, Sam N. Barnett, Shani Perera, Carlos Talavera-López, Ilaria Mulas, Krishnaa T. Mahbubani, Liz Tuck, Lu Wang, Margaret M. Huang, Martin Prete, Sophie Pritchard, John Dark, Kourosh Saeb-Parsy, Minal Patel, Menna R. Clatworthy, Norbert Hübner, Rasheda A. Chowdhury, Michela Noseda & Sarah A. Teichmann. Spatially resolved multiomics of human cardiac niches. Nature, July 2023. doi:10.1038/s41586-023-06311-1.