polish-reranker-base-mse

This is a Polish text ranking model trained using the mean squared error (MSE) distillation method on a large dataset of text pairs consisting of 1.4 million queries and 10 million documents. The training data included the following parts: 1) The Polish MS MARCO training split (800k queries); 2) The ELI5 dataset translated to Polish (over 500k queries); 3) A collection of Polish medical questions and answers (approximately 100k queries). As a teacher model, we employed unicamp-dl/mt5-13b-mmarco-100k, a large multilingual reranker based on the MT5-XXL architecture. As a student model, we choose Polish RoBERTa. In the MSE method, the student is trained to directly replicate the outputs returned by the teacher.

Usage (Sentence-Transformers)

You can use the model like this with sentence-transformers:

from sentence_transformers import CrossEncoder
import torch.nn

query = "Jak dożyć 100 lat?"
answers = [
    "Trzeba zdrowo się odżywiać i uprawiać sport.",
    "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
    "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]

model = CrossEncoder(
    "sdadas/polish-reranker-base-mse",
    default_activation_function=torch.nn.Identity(),
    max_length=512,
    device="cuda" if torch.cuda.is_available() else "cpu"
)
pairs = [[query, answer] for answer in answers]
results = model.predict(pairs)
print(results.tolist())

Usage (Huggingface Transformers)

The model can also be used with Huggingface Transformers in the following way:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np

query = "Jak dożyć 100 lat?"
answers = [
    "Trzeba zdrowo się odżywiać i uprawiać sport.",
    "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
    "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]

model_name = "sdadas/polish-reranker-base-mse"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
texts = [f"{query}</s></s>{answer}" for answer in answers]
tokens = tokenizer(texts, padding="longest", max_length=512, truncation=True, return_tensors="pt")
output = model(**tokens)
results = output.logits.detach().numpy()
results = np.squeeze(results)
print(results.tolist())

Evaluation Results

The model achieves NDCG@10 of 57.50 in the Rerankers category of the Polish Information Retrieval Benchmark. See PIRB Leaderboard for detailed results.

Citation

@article{dadas2024assessing,
  title={Assessing generalization capability of text ranking models in Polish}, 
  author={Sławomir Dadas and Małgorzata Grębowiec},
  year={2024},
  eprint={2402.14318},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
308
Safetensors
Model size
124M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including sdadas/polish-reranker-base-mse