Update README.md
Browse files
README.md
CHANGED
@@ -57,68 +57,7 @@ class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
|
57 |
x = self.decoder(x)
|
58 |
return x
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
md
|
63 |
-
Copy code
|
64 |
-
---
|
65 |
-
tags:
|
66 |
-
- autoencoder
|
67 |
-
- image-colorization
|
68 |
-
- pytorch
|
69 |
-
- pytorch_model_hub_mixin
|
70 |
-
---
|
71 |
-
|
72 |
-
# Model Colorization Autoencoder
|
73 |
-
|
74 |
-
## Model Description
|
75 |
-
|
76 |
-
This autoencoder model is designed for image colorization. It takes grayscale images as input and outputs colorized versions of those images. The model architecture consists of an encoder-decoder structure, where the encoder compresses the input image into a latent representation, and the decoder reconstructs the image in color.
|
77 |
-
|
78 |
-
### Architecture
|
79 |
-
|
80 |
-
- **Encoder**: The encoder comprises three convolutional layers followed by max pooling and ReLU activations, each paired with batch normalization. It ends with a flattening layer and a fully connected layer to produce a latent vector.
|
81 |
-
- **Decoder**: The decoder mirrors the encoder, using linear and transposed convolutional layers with ReLU activations and batch normalization. The final layer outputs a color image using a sigmoid activation function.
|
82 |
-
|
83 |
-
The architecture details are as follows:
|
84 |
-
```python
|
85 |
-
class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
86 |
-
def __init__(self):
|
87 |
-
super(ModelColorization, self).__init__()
|
88 |
-
self.encoder = nn.Sequential(
|
89 |
-
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
|
90 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
91 |
-
nn.ReLU(),
|
92 |
-
nn.BatchNorm2d(64),
|
93 |
-
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
|
94 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
95 |
-
nn.ReLU(),
|
96 |
-
nn.BatchNorm2d(32),
|
97 |
-
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
|
98 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
99 |
-
nn.ReLU(),
|
100 |
-
nn.BatchNorm2d(16),
|
101 |
-
nn.Flatten(),
|
102 |
-
nn.Linear(16*45*45, 4000),
|
103 |
-
)
|
104 |
-
self.decoder = nn.Sequential(
|
105 |
-
nn.Linear(4000, 16 * 45 * 45),
|
106 |
-
nn.ReLU(),
|
107 |
-
nn.Unflatten(1, (16, 45, 45)),
|
108 |
-
nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
|
109 |
-
nn.ReLU(),
|
110 |
-
nn.BatchNorm2d(32),
|
111 |
-
nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
112 |
-
nn.ReLU(),
|
113 |
-
nn.BatchNorm2d(64),
|
114 |
-
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
|
115 |
-
nn.Sigmoid()
|
116 |
-
)
|
117 |
-
|
118 |
-
def forward(self, x):
|
119 |
-
x = self.encoder(x)
|
120 |
-
x = self.decoder(x)
|
121 |
-
return x
|
122 |
|
123 |
### Training Details
|
124 |
The model was trained using PyTorch for 5 epochs. Here are the training and validation losses observed during the training:
|
@@ -140,4 +79,4 @@ pip install torch torchvision transformers
|
|
140 |
from transformers import AutoModel
|
141 |
|
142 |
model = AutoModel.from_pretrained("sebastiansarasti/AutoEncoderImageColorization")
|
143 |
-
```
|
|
|
57 |
x = self.decoder(x)
|
58 |
return x
|
59 |
|
60 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
### Training Details
|
63 |
The model was trained using PyTorch for 5 epochs. Here are the training and validation losses observed during the training:
|
|
|
79 |
from transformers import AutoModel
|
80 |
|
81 |
model = AutoModel.from_pretrained("sebastiansarasti/AutoEncoderImageColorization")
|
82 |
+
```python
|