apepkuss79's picture
Update README.md
f7902df verified
|
raw
history blame
4.13 kB
---
base_model: mistralai/Mistral-7B-Instruct-v0.1
inference: false
license: apache-2.0
model_creator: Mistral AI
model_name: Mistral 7B Instruct v0.1
model_type: mistral
pipeline_tag: text-generation
tags:
- finetuned
quantized_by: Second State Inc.
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Mistral-7B-Instruct-v0.1-GGUF
## Original Model
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
## Run with LlamaEdge
- LlamaEdge version: [v0.2.8](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.2.8) and above
- Prompt template
- Prompt type: `mistral-instruct`
- Prompt string
```text
<s>[INST] {prompt} [/INST]
```
- Run as LlamaEdge service
```bash
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Mistral-7B-Instruct-v0.1-Q5_K_M.gguf llama-api-server.wasm -p mistral-instruct
```
- Run as LlamaEdge command app
```bash
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Mistral-7B-Instruct-v0.1-Q5_K_M.gguf llama-chat.wasm -p mistral-instruct
```
## Quantized GGUF Models
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ----- |
| [Mistral-7B-Instruct-v0.1-Q2_K.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q2_K.gguf) | Q2_K | 2 | 2.7 GB| smallest, significant quality loss - not recommended for most purposes |
| [Mistral-7B-Instruct-v0.1-Q3_K_L.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| small, substantial quality loss |
| [Mistral-7B-Instruct-v0.1-Q3_K_M.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| very small, high quality loss |
| [Mistral-7B-Instruct-v0.1-Q3_K_S.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| very small, high quality loss |
| [Mistral-7B-Instruct-v0.1-Q4_0.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| legacy; small, very high quality loss - prefer using Q3_K_M |
| [Mistral-7B-Instruct-v0.1-Q4_K_M.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| medium, balanced quality - recommended |
| [Mistral-7B-Instruct-v0.1-Q4_K_S.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| small, greater quality loss |
| [Mistral-7B-Instruct-v0.1-Q5_0.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q5_0.gguf) | Q5_0 | 5 | 5 GB| legacy; medium, balanced quality - prefer using Q4_K_M |
| [Mistral-7B-Instruct-v0.1-Q5_K_M.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| large, very low quality loss - recommended |
| [Mistral-7B-Instruct-v0.1-Q5_K_S.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q5_K_S.gguf) | Q5_K_S | 5 | 5 GB| large, low quality loss - recommended |
| [Mistral-7B-Instruct-v0.1-Q6_K.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q6_K.gguf) | Q6_K | 6 | 5.94 GB| very large, extremely low quality loss |
| [Mistral-7B-Instruct-v0.1-Q8_0.gguf](https://huggingface.co/second-state/Mistral-7B-Instruct-v0.1-GGUF/blob/main/Mistral-7B-Instruct-v0.1-Q8_0.gguf) | Q8_0 | 8 | 7.7 GB| very large, extremely low quality loss - not recommended |