apepkuss79's picture
Update README.md
f472d22 verified
---
base_model: nomic-ai/nomic-embed-text-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
license: apache-2.0
model_creator: nomic-ai
quantized_by: Second State Inc.
language: en
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Nomic-embed-text-v1.5-Embedding-GGUF
## Original Model
[nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
## Run with LlamaEdge
- LlamaEdge version: [v0.12.3](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.12.3) and above
- Context size: `768`
- Run as LlamaEdge service
```bash
wasmedge --dir .:. --nn-preload default:GGML:AUTO:nomic-embed-text-v1.5-f16.gguf \
llama-api-server.wasm \
--prompt-template embedding \
--ctx-size 768 \
--model-name nomic-embed-text-v1.5
```
## Quantized GGUF Models
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ----- |
| [nomic-embed-text-v1.5-Q2_K.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q2_K.gguf) | Q2_K | 2 |60.9 MB| smallest, significant quality loss - not recommended for most purposes |
| [nomic-embed-text-v1.5-Q3_K_L.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q3_K_L.gguf) | Q3_K_L | 3 | 80.7 MB| small, substantial quality loss |
| [nomic-embed-text-v1.5-Q3_K_M.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q3_K_M.gguf) | Q3_K_M | 3 | 76.3 MB| very small, high quality loss |
| [nomic-embed-text-v1.5-Q3_K_S.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q3_K_S.gguf) | Q3_K_S | 3 | 68.8 MB| very small, high quality loss |
| [nomic-embed-text-v1.5-Q4_0.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q4_0.gguf) | Q4_0 | 4 | 84.8 MB| legacy; small, very high quality loss - prefer using Q3_K_M |
| [nomic-embed-text-v1.5-Q4_K_M.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q4_K_M.gguf) | Q4_K_M | 4 | 90.2 MB| medium, balanced quality - recommended |
| [nomic-embed-text-v1.5-Q4_K_S.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q4_K_S.gguf) | Q4_K_S | 4 | 84.1 MB| small, greater quality loss |
| [nomic-embed-text-v1.5-Q5_0.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q5_0.gguf) | Q5_0 | 5 | 98 MB| legacy; medium, balanced quality - prefer using Q4_K_M |
| [nomic-embed-text-v1.5-Q5_K_M.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q5_K_M.gguf) | Q5_K_M | 5 | 103 MB| large, very low quality loss - recommended |
| [nomic-embed-text-v1.5-Q5_K_S.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q5_K_S.gguf) | Q5_K_S | 5 | 98 MB| large, low quality loss - recommended |
| [nomic-embed-text-v1.5-Q6_K.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q6_K.gguf) | Q6_K | 6 | 113 MB| very large, extremely low quality loss |
| [nomic-embed-text-v1.5-Q8_0.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-Q8_0.gguf) | Q8_0 | 8 | 146 MB| very large, extremely low quality loss - not recommended |
| [nomic-embed-text-v1.5-f16.gguf](https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF/blob/main/nomic-embed-text-v1.5-f16.gguf) | Q8_0 | 8 | 274 MB| very large, extremely low quality loss - not recommended |
*Quantized with llama.cpp b2636*