Yi-34Bx2-MoE-60B-GGUF

Original Model

cloudyu/Yi-34Bx2-MoE-60B

Run with LlamaEdge

  • LlamaEdge version: v0.2.8 and above

  • Prompt template

    • Prompt type: chatml

    • Prompt string

      <|im_start|>system
      {system_message}<|im_end|>
      <|im_start|>user
      {prompt}<|im_end|>
      <|im_start|>assistant
      
    • Reverse prompt: <|im_end|>

  • Context size: 7168

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Yi-34Bx2-MoE-60B-Q5_K_M.gguf \
      llama-api-server.wasm \
      --prompt-template chatml \
      --reverse-prompt '<|im_end|>' \
      --ctx-size 7168 \
      --model-name Yi-34Bx2-MoE-60B
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Yi-34Bx2-MoE-60B-Q5_K_M.gguf \
      llama-chat.wasm \
      --prompt-template chatml \
      --reverse-prompt '<|im_end|>' \
      --ctx-size 7168
    

Quantized GGUF Models

Name Quant method Bits Size Use case
Yi-34Bx2-MoE-60B-Q2_K.gguf Q2_K 2 22.4 GB smallest, significant quality loss - not recommended for most purposes
Yi-34Bx2-MoE-60B-Q3_K_L.gguf Q3_K_L 3 31.8 GB small, substantial quality loss
Yi-34Bx2-MoE-60B-Q3_K_M.gguf Q3_K_M 3 29.2 GB very small, high quality loss
Yi-34Bx2-MoE-60B-Q3_K_S.gguf Q3_K_S 3 26.3 GB very small, high quality loss
Yi-34Bx2-MoE-60B-Q4_0.gguf Q4_0 4 34.3 GB legacy; small, very high quality loss - prefer using Q3_K_M
Yi-34Bx2-MoE-60B-Q4_K_M.gguf Q4_K_M 4 36.7 GB medium, balanced quality - recommended
Yi-34Bx2-MoE-60B-Q4_K_S.gguf Q4_K_S 4 34.6 GB small, greater quality loss
Yi-34Bx2-MoE-60B-Q5_0.gguf Q5_0 5 41.9 GB legacy; medium, balanced quality - prefer using Q4_K_M
Yi-34Bx2-MoE-60B-Q5_K_M.gguf Q5_K_M 5 43.1 GB large, very low quality loss - recommended
Yi-34Bx2-MoE-60B-Q5_K_S.gguf Q5_K_S 5 41.9 GB large, low quality loss - recommended
Yi-34Bx2-MoE-60B-Q6_K.gguf Q6_K 6 49.9 GB very large, extremely low quality loss
Yi-34Bx2-MoE-60B-Q8_0-00001-of-00003.gguf Q8_0 8 32.2 GB very large, extremely low quality loss - not recommended
Yi-34Bx2-MoE-60B-Q8_0-00002-of-00003.gguf Q8_0 8 32.1 GB very large, extremely low quality loss - not recommended
Yi-34Bx2-MoE-60B-Q8_0-00001-of-00003.gguf Q8_0 8 312 MB very large, extremely low quality loss - not recommended
Yi-34Bx2-MoE-60B-f16-00001-of-00008.gguf f16 16 31.9 GB
Yi-34Bx2-MoE-60B-f16-00002-of-00008.gguf f16 16 31.7 GB
Yi-34Bx2-MoE-60B-f16-00003-of-00008.gguf f16 16 31.7 GB
Yi-34Bx2-MoE-60B-f16-00004-of-00008.gguf f16 16 31.7 GB
Yi-34Bx2-MoE-60B-f16-00005-of-00008.gguf f16 16 31.7 GB
Yi-34Bx2-MoE-60B-f16-00006-of-00008.gguf f16 16 31.7 GB
Yi-34Bx2-MoE-60B-f16-00007-of-00008.gguf f16 16 31.7 GB
Yi-34Bx2-MoE-60B-f16-00008-of-00008.gguf f16 16 21.1 GB

Quantized with llama.cpp b2734

Downloads last month
95
GGUF
Model size
60.8B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for second-state/Yi-34Bx2-MoE-60B-GGUF

Quantized
(3)
this model