apepkuss79's picture
Upload README.md with huggingface_hub
124fbda verified
---
tags:
- mteb
- sentence-transformers
- transformers
- Qwen2
- sentence-similarity
license: apache-2.0
base_model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
model_creator: intfloat
quantized_by: Second State Inc.
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# gte-Qwen2-1.5B-instruct-GGUF
## Original Model
[Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)
## Run with LlamaEdge
- LlamaEdge version: [v0.12.2](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.12.2) and above
- Prompt template
- Prompt type: `embedding`
- Context size: `32000`
- Run as LlamaEdge service
```bash
wasmedge --dir .:. --nn-preload default:GGML:AUTO:gte-Qwen2-1.5B-instruct-Q5_K_M.gguf \
llama-api-server.wasm \
--prompt-template embedding \
--ctx-size 32000 \
--model-name gte-Qwen2-1.5B-instruct
```
## Quantized GGUF Models
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ----- |
| [gte-Qwen2-1.5B-instruct-Q2_K.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q2_K.gguf) | Q2_K | 2 | 752 MB| smallest, significant quality loss - not recommended for most purposes |
| [gte-Qwen2-1.5B-instruct-Q3_K_L.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q3_K_L.gguf) | Q3_K_L | 3 | 980 MB| small, substantial quality loss |
| [gte-Qwen2-1.5B-instruct-Q3_K_M.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q3_K_M.gguf) | Q3_K_M | 3 | 924 MB| very small, high quality loss |
| [gte-Qwen2-1.5B-instruct-Q3_K_S.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q3_K_S.gguf) | Q3_K_S | 3 | 861 MB| very small, high quality loss |
| [gte-Qwen2-1.5B-instruct-Q4_0.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q4_0.gguf) | Q4_0 | 4 | 1.07 GB| legacy; small, very high quality loss - prefer using Q3_K_M |
| [gte-Qwen2-1.5B-instruct-Q4_K_M.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q4_K_M.gguf) | Q4_K_M | 4 | 1.12 GB| medium, balanced quality - recommended |
| [gte-Qwen2-1.5B-instruct-Q4_K_S.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q4_K_S.gguf) | Q4_K_S | 4 | 1.07 GB| small, greater quality loss |
| [gte-Qwen2-1.5B-instruct-Q5_0.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q5_0.gguf) | Q5_0 | 5 | 1.26 GB| legacy; medium, balanced quality - prefer using Q4_K_M |
| [gte-Qwen2-1.5B-instruct-Q5_K_M.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q5_K_M.gguf) | Q5_K_M | 5 | 1.28 GB| large, very low quality loss - recommended |
| [gte-Qwen2-1.5B-instruct-Q5_K_S.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q5_K_S.gguf) | Q5_K_S | 5 | 1.26 GB| large, low quality loss - recommended |
| [gte-Qwen2-1.5B-instruct-Q6_K.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q6_K.gguf) | Q6_K | 6 | 1.46 GB| very large, extremely low quality loss |
| [gte-Qwen2-1.5B-instruct-Q8_0.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q8_0.gguf) | Q8_0 | 8 | 1.89 GB| very large, extremely low quality loss - not recommended |
| [gte-Qwen2-1.5B-instruct-f16.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-f16.gguf) | f16 | 8 | 3.56 GB| very large, extremely low quality loss - not recommended |
*Quantized with llama.cpp b3259*