File size: 6,121 Bytes
1b0e747
a0b143e
1b0e747
a0b143e
9952117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b0e747
 
0a74063
9952117
f4bdb4d
 
9952117
 
 
 
 
6e0a502
66be0b4
9952117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
language: en
tags:
- conversational
- python
- programmer
license: llama3
base_model: unsloth/Llama-3.2-3B-Instruct
widget:
- example_title: Python Programmer Example
  messages:
  - role: system
    content: >-
      You are a Python Programmer AI, designed to provide code solutions, 
      technical guidance, and development best practices.
  - role: user
    content: Create a function to calculate Fibonacci numbers recursively
model-index:
- name: NazareAI-Python-Programmer
  results: []
library_name: transformers
datasets:
- 0xroyce/NazareAI-Python-Programmer
---

# NazareAI - Python Programmer 3B - Version 1

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63bb3f12595fa15f4e4cb368/h1z7_6p1K19wVDyWfEejL.png)

### Overview
**NazareAI** is redefining the workforce with its **Autonomous AI Workforce** solution—tackling scalability, cost, and efficiency challenges in one fell swoop. This demo spotlights the **Python Programmer** AI, a specialized agent engineered to deliver expert-level coding solutions, technical architecture guidance, and implementation best practices for Python-based projects.

NarazeAI AI Workforce: https://seedgularity.com/nazareai-ai-workforce/

Need system prompt? You can download it from here: https://github.com/seedgularity/NazareAI-Python-Programmer-3B

### Features
- **Technical Expertise**  
  Draws from comprehensive knowledge of Python programming, design patterns, and software architecture principles.
- **Intelligent Code Generation**  
  Produces clean, efficient, and well-documented code that follows best practices and industry standards.
- **Problem-Solving Capability**  
  Analyzes requirements and provides optimal technical solutions while considering performance and scalability.

### Use Cases
1. **Application Development**  
   Build complete Python applications with proper structure, error handling, and documentation.
2. **Code Optimization**  
   Analyze existing code and recommend improvements for better performance and maintainability.
3. **API Development**  
   Design and implement RESTful APIs using modern Python frameworks like FastAPI or Flask.
4. **Technical Documentation**  
   Generate comprehensive documentation including API specs, setup guides, and code documentation.

## Response Format

NazareAI Python Programmer provides two types of responses:

1. **Default Mode**: Provides detailed explanations along with the code, including:
   - Problem analysis
   - Solution approach
   - Code explanation
   - Implementation considerations
   - Best practices and recommendations
   - Usage examples

2. **Code-Only Mode**: When users add `[CODE ONLY]` at the end of their prompt, it provides:
   - Clean, production-ready code without explanations
   - Necessary comments and docstrings
   - Complete implementation focused on the requested functionality

### Example Interactions

#### Default Mode
```plaintext
User: Create a function to calculate Fibonacci numbers recursively

AI: To create a recursive function for calculating Fibonacci numbers, we need to understand that the sequence is defined as:
- F(0) = 0
- F(1) = 1
- For n > 1, F(n) = F(n-1) + F(n-2)

Below is a Python implementation of such a function:

```python
def fibonacci_recursive(n):
    """
    Calculate the nth Fibonacci number recursively.

    Args:
        n (int): The index of the Fibonacci sequence (0-indexed).

    Returns:
        int: The nth Fibonacci number.
    
    Raises:
        ValueError: If n is negative or not an integer.
    """
    # Error handling for invalid input
    if not isinstance(n, int):
        raise TypeError("Input must be an integer.")
    if n < 0:
        raise ValueError("Input must be a non-negative integer.")

    # Base cases
    if n == 0:
        return 0
    elif n == 1:
        return 1

    # Recursive case
    return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)

# Example usage with error handling
if __name__ == "__main__":
    try:
        print(fibonacci_recursive(10))   # Output: 55 (Fibonacci number at index 10)
        print(fibonacci_recursive(-5))   # Raises ValueError
    except Exception as e:
        print("Error:", e)

### Key Technical Notes:

1. **Recursion**: This implementation uses the recursive definition of Fibonacci numbers to calculate each term by adding two preceding terms.

2. **Time Complexity**: The time complexity for calculating `fibonacci_recursive` is exponential, O(2^n), due to its recursive nature and constant space used per 
call (`O(n)`). For large inputs, this can lead to performance issues.

3. **Space Complexity**: Space usage is also linear in terms of recursion depth (since each function call has a stack frame).

4. **Memoization or Iteration**: To improve efficiency, consider using memoization or an iterative approach like the "Matrix Exponentiation" method which would 
reduce time complexity to O(log n) and space complexity to O(1). Here’s how you could implement it iteratively:

```python
def fibonacci_iterative(n):
    if not isinstance(n, int):
        raise TypeError("Input must be an integer.")
    if n < 0:
        raise ValueError("Input must be a non-negative integer.")

    # Initialize variables to store previous two Fibonacci numbers
    prev1, prev2 = 0, 1

    for _ in range(2, n + 1):
        curr = prev1 + prev2
        prev1 = prev2
        prev2 = curr
    
    return curr

# Example usage with error handling remains unchanged.

This iterative approach is more efficient and suitable for larger inputs while retaining the same functionality as your recursive implementation.
```

#### Code-Only Mode
```plaintext
User: Create a function to calculate Fibonacci numbers recursively [CODE ONLY]

AI:
```python
def fibonacci_recursive(n):
    if not isinstance(n, int):
        raise TypeError("Input must be an integer.")
    if n < 0:
        raise ValueError("Input must be a non-negative integer.")

    # Base cases
    if n == 0:
        return 0
    elif n == 1:
        return 1

    # Recursive case
    return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
```