We tried to use the huggingface transformers library to recreate the TinyStories models on Consumer GPU. Output model has 9 million parameters.

Tweaked code of springtangent (https://github.com/springtangent/tinystoriestrainer/blob/main/tinystories_train.py)

Code credit - springtangent

------ EXAMPLE USAGE ---

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("segestic/Tinystories-0.1-9m")

model = AutoModelForCausalLM.from_pretrained("segestic/Tinystories-0.1-9m")

prompt = "Once upon a time there was"

input_ids = tokenizer.encode(prompt, return_tensors="pt")

Generate completion

output = model.generate(input_ids, max_length = 1000, num_beams=1)

Decode the completion

output_text = tokenizer.decode(output[0], skip_special_tokens=True)

Print the generated text

print(output_text)

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train segestic/Tinystories-0.1-9m