seiching's picture
update model card README.md
1a2d433
metadata
language:
  - zh
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper large zh - seiching
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: zh-TW
          split: test
          args: zh-TW
        metrics:
          - name: Wer
            type: wer
            value: 39.92812936713915

Whisper large zh - seiching

This model is a fine-tuned version of openai/whisper-large on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2457
  • Wer Ortho: 40.3316
  • Wer: 39.9281

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0361 0.69 500 0.1989 38.3627 37.9517
0.0105 1.38 1000 0.2217 39.0259 38.9100
0.0208 2.06 1500 0.2299 39.6891 39.3292
0.0091 2.75 2000 0.2264 39.8964 39.4091
0.0153 3.44 2500 0.2363 39.8135 39.3891
0.0191 4.13 3000 0.2415 40.1865 40.0080
0.0061 4.81 3500 0.2542 41.1813 39.9281
0.0107 5.5 4000 0.2457 40.3316 39.9281

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.13.2
  • Tokenizers 0.13.3