selfconstruct3d commited on
Commit
ad3695b
·
verified ·
1 Parent(s): 6b12fe9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -7
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  - fine-tuned
8
  ---
9
 
10
- # Model Card for MPNet Cybersecurity Classifier
11
 
12
  This is a fine-tuned MPNet model specialized for classifying cybersecurity threat groups based on textual descriptions of their tactics and techniques.
13
 
@@ -186,12 +186,17 @@ To be anounced...
186
  | Weighted F1 Score | [More Information Needed] |
187
 
188
 
189
- Embedding Variability Accuracy
190
- Original MPNet 0.092721 0.998611
191
- MLM Fine-tuned MPNet 0.034983 0.653611
192
- Classification Fine-tuned MPNet 0.193065 0.950833
193
- SecBERT 0.591303 0.988611
194
- ATTACK-BERT 0.096108 0.967778
 
 
 
 
 
195
 
196
  ### Single Prediction Example
197
 
 
7
  - fine-tuned
8
  ---
9
 
10
+ # AttackGroup-MPNET - Model Card for MPNet Cybersecurity Classifier
11
 
12
  This is a fine-tuned MPNet model specialized for classifying cybersecurity threat groups based on textual descriptions of their tactics and techniques.
13
 
 
186
  | Weighted F1 Score | [More Information Needed] |
187
 
188
 
189
+ ## Evaluation Results
190
+
191
+ | Model | Embedding Variability | Accuracy |
192
+ |-----------------------------------------------|-----------------------|----------|
193
+ | Original MPNet | 0.085554 | 0.9964 |
194
+ | MLM Fine-tuned MPNet | 0.034983 | 0.6536 |
195
+ | ** AttackGroup-MPNET ** | 0.193065 | 0.9508 |
196
+ | SecBERT | 0.591303 | 0.9886 |
197
+ | ATTACK-BERT | 0.096108 | 0.9678 |
198
+ | SecureBERT | 0.007100 | 0.4931 |
199
+
200
 
201
  ### Single Prediction Example
202