selmamalak's picture
End of training
59d1004 verified
|
raw
history blame
2.63 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: microsoft/swin-large-patch4-window7-224-in22k
model-index:
  - name: blood-swin-base-finetuned-wandb
    results: []

blood-swin-base-finetuned-wandb

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224-in22k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1036
  • Accuracy: 0.9649
  • Precision: 0.9627
  • Recall: 0.9616
  • F1: 0.9619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5141 1.0 187 0.2833 0.9065 0.8954 0.8949 0.8873
0.4176 2.0 374 0.1986 0.9311 0.9243 0.9209 0.9182
0.3454 3.0 561 0.1567 0.9504 0.9427 0.9397 0.9403
0.3228 4.0 748 0.1849 0.9357 0.9232 0.9426 0.9283
0.3382 5.0 935 0.1627 0.9398 0.9302 0.9397 0.9321
0.3363 6.0 1122 0.1414 0.9509 0.9498 0.9442 0.9456
0.2981 7.0 1309 0.1117 0.9544 0.9458 0.9542 0.9480
0.2214 8.0 1496 0.1131 0.9650 0.9642 0.9584 0.9610
0.1928 9.0 1683 0.0966 0.9650 0.9632 0.9628 0.9624
0.1901 10.0 1870 0.0775 0.9714 0.9690 0.9699 0.9692

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2