File size: 2,579 Bytes
12475a2
 
 
 
 
 
 
 
 
 
 
 
 
 
e11e64a
12475a2
 
 
 
 
 
e11e64a
12475a2
 
 
63b281e
 
 
 
 
12475a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11e64a
 
 
 
 
 
 
 
 
 
12475a2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- medmnist-v2
metrics:
- accuracy
- precision
- recall
- f1
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: organc-vit-base-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# organc-vit-base-finetuned

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2714
- Accuracy: 0.9141
- Precision: 0.9095
- Recall: 0.9007
- F1: 0.9042

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.6525        | 1.0   | 203  | 0.2025          | 0.9327   | 0.9260    | 0.9130 | 0.9091 |
| 0.765         | 2.0   | 406  | 0.2110          | 0.9377   | 0.9441    | 0.9289 | 0.9344 |
| 0.6514        | 3.0   | 609  | 0.2026          | 0.9490   | 0.9457    | 0.9442 | 0.9428 |
| 0.6405        | 4.0   | 813  | 0.2056          | 0.9289   | 0.9481    | 0.9175 | 0.9267 |
| 0.6514        | 5.0   | 1016 | 0.1362          | 0.9523   | 0.9459    | 0.9385 | 0.9382 |
| 0.5778        | 6.0   | 1219 | 0.0787          | 0.9770   | 0.9739    | 0.9746 | 0.9737 |
| 0.4759        | 7.0   | 1422 | 0.0959          | 0.9724   | 0.9744    | 0.9693 | 0.9714 |
| 0.482         | 8.0   | 1626 | 0.0743          | 0.9762   | 0.9737    | 0.9737 | 0.9733 |
| 0.3729        | 9.0   | 1829 | 0.0903          | 0.9758   | 0.9778    | 0.9754 | 0.9762 |
| 0.3705        | 9.99  | 2030 | 0.0732          | 0.9808   | 0.9830    | 0.9826 | 0.9825 |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2