metadata
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- medmnist-v2
metrics:
- accuracy
- precision
- recall
- f1
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: organc-vit-base-finetuned
results: []
organc-vit-base-finetuned
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2248
- Accuracy: 0.9283
- Precision: 0.9231
- Recall: 0.9160
- F1: 0.9189
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.6907 | 1.0 | 203 | 0.2221 | 0.9202 | 0.9165 | 0.8691 | 0.8480 |
0.5616 | 2.0 | 406 | 0.1278 | 0.9720 | 0.9657 | 0.9694 | 0.9666 |
0.5515 | 3.0 | 609 | 0.1428 | 0.9649 | 0.9626 | 0.9640 | 0.9621 |
0.4941 | 4.0 | 813 | 0.1016 | 0.9724 | 0.9683 | 0.9696 | 0.9683 |
0.4764 | 5.0 | 1016 | 0.0998 | 0.9716 | 0.9654 | 0.9649 | 0.9637 |
0.4599 | 6.0 | 1219 | 0.0941 | 0.9758 | 0.9775 | 0.9788 | 0.9778 |
0.4525 | 7.0 | 1422 | 0.0861 | 0.9795 | 0.9812 | 0.9793 | 0.9800 |
0.3835 | 8.0 | 1626 | 0.0788 | 0.9849 | 0.9846 | 0.9850 | 0.9847 |
0.2767 | 9.0 | 1829 | 0.0935 | 0.9774 | 0.9805 | 0.9800 | 0.9798 |
0.299 | 9.99 | 2030 | 0.0701 | 0.9854 | 0.9843 | 0.9864 | 0.9852 |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2