segformer-b1-finetuned-cityscapes-1024-1024-full-ds

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0506
  • Mean Iou: 0.9137
  • Mean Accuracy: 0.9561
  • Overall Accuracy: 0.9831
  • Accuracy Default: 1e-06
  • Accuracy Pipe: 0.9020
  • Accuracy Floor: 0.9742
  • Accuracy Background: 0.9920
  • Iou Default: 1e-06
  • Iou Pipe: 0.7996
  • Iou Floor: 0.9590
  • Iou Background: 0.9824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Default Accuracy Pipe Accuracy Floor Accuracy Background Iou Default Iou Pipe Iou Floor Iou Background
0.2488 1.0 39 0.1108 0.8539 0.9260 0.9669 1e-06 0.8345 0.9681 0.9754 1e-06 0.6794 0.9185 0.9639
0.0768 2.0 78 0.0659 0.8845 0.9254 0.9772 1e-06 0.8239 0.9573 0.9951 1e-06 0.7287 0.9506 0.9741
0.0663 3.0 117 0.0588 0.8918 0.9320 0.9793 1e-06 0.8343 0.9687 0.9931 1e-06 0.7439 0.9540 0.9776
0.0562 4.0 156 0.0534 0.9000 0.9592 0.9806 1e-06 0.9237 0.9627 0.9912 1e-06 0.7654 0.9539 0.9808
0.0509 5.0 195 0.0512 0.9063 0.9492 0.9817 1e-06 0.8876 0.9660 0.9940 1e-06 0.7813 0.9569 0.9806
0.0456 6.0 234 0.0498 0.9058 0.9550 0.9819 1e-06 0.9037 0.9692 0.9920 1e-06 0.7783 0.9574 0.9817
0.0425 7.0 273 0.0493 0.9045 0.9515 0.9817 1e-06 0.8918 0.9709 0.9918 1e-06 0.7748 0.9576 0.9810
0.0402 8.0 312 0.0503 0.9074 0.9456 0.9821 1e-06 0.8722 0.9706 0.9939 1e-06 0.7833 0.9581 0.9810
0.0382 9.0 351 0.0501 0.9108 0.9471 0.9825 1e-06 0.8766 0.9702 0.9943 1e-06 0.7930 0.9581 0.9812
0.0402 10.0 390 0.0474 0.9122 0.9520 0.9830 1e-06 0.8907 0.9720 0.9933 1e-06 0.7959 0.9583 0.9824
0.0367 11.0 429 0.0497 0.9089 0.9571 0.9824 1e-06 0.9088 0.9705 0.9919 1e-06 0.7863 0.9585 0.9820
0.0355 12.0 468 0.0445 0.9191 0.9618 0.9843 1e-06 0.9202 0.9719 0.9933 1e-06 0.8132 0.9597 0.9844
0.033 13.0 507 0.0494 0.9114 0.9543 0.9828 1e-06 0.8965 0.9746 0.9918 1e-06 0.7943 0.9571 0.9827
0.0319 14.0 546 0.0471 0.9163 0.9542 0.9837 1e-06 0.8953 0.9740 0.9934 1e-06 0.8068 0.9585 0.9835
0.0304 15.0 585 0.0476 0.9167 0.9527 0.9839 1e-06 0.8911 0.9726 0.9944 1e-06 0.8070 0.9598 0.9834
0.0304 16.0 624 0.0492 0.9151 0.9498 0.9835 1e-06 0.8812 0.9744 0.9939 1e-06 0.8036 0.9585 0.9832
0.0297 17.0 663 0.0504 0.9147 0.9549 0.9834 1e-06 0.9003 0.9705 0.9939 1e-06 0.8023 0.9587 0.9830
0.03 18.0 702 0.0504 0.9123 0.9584 0.9830 1e-06 0.9103 0.9732 0.9917 1e-06 0.7953 0.9588 0.9828
0.0294 19.0 741 0.0483 0.9162 0.9553 0.9839 1e-06 0.8980 0.9749 0.9931 1e-06 0.8054 0.9596 0.9838
0.0295 20.0 780 0.0506 0.9137 0.9561 0.9831 1e-06 0.9020 0.9742 0.9920 1e-06 0.7996 0.9590 0.9824

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for selvaa/segformer-b1-finetuned-cityscapes-1024-1024-full-ds

Finetuned
(8)
this model