distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5690
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2968 1.0 57 1.2136 0.7
1.0931 2.0 114 1.1346 0.7
0.9362 3.0 171 0.9992 0.76
0.948 4.0 228 0.9344 0.76
0.7033 5.0 285 0.7802 0.81
0.6625 6.0 342 0.7777 0.79
0.5627 7.0 399 0.7143 0.81
0.5081 8.0 456 0.6232 0.86
0.4635 9.0 513 0.6564 0.85
0.3347 10.0 570 0.6108 0.85
0.2895 11.0 627 0.7139 0.8
0.2493 12.0 684 0.5887 0.84
0.2673 13.0 741 0.5907 0.86
0.1949 14.0 798 0.5798 0.83
0.1541 15.0 855 0.5532 0.87
0.1913 16.0 912 0.5314 0.87
0.1339 17.0 969 0.5337 0.88
0.0876 18.0 1026 0.5815 0.87
0.0713 19.0 1083 0.5847 0.85
0.0869 20.0 1140 0.5456 0.86
0.0587 21.0 1197 0.5480 0.86
0.0524 22.0 1254 0.5534 0.87
0.0621 23.0 1311 0.5707 0.87
0.0452 24.0 1368 0.5748 0.87
0.0464 25.0 1425 0.5690 0.87

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for semaj83/distilhubert-finetuned-gtzan

Finetuned
(414)
this model

Dataset used to train semaj83/distilhubert-finetuned-gtzan

Evaluation results