library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B-Instruct
license: llama3
language:
- pt
tags:
- code
- sql
- finetuned
- portugues-BR
co2_eq_emissions:
emissions: 1450
source: >-
Lacoste, Alexandre, et al. “Quantifying the Carbon Emissions of Machine
Learning.” ArXiv (Cornell University), 21 Oct. 2019,
https://doi.org/10.48550/arxiv.1910.09700.
training_type: fine-tuning
geographical_location: Council Bluffs, Iowa, USA.
hardware_used: 1 A100 40GB GPU
Lloro SQL
Lloro SQL, developed by Semantix Research Labs, is a language Model that was trained to effectively transform Portuguese queries into SQL Code. It is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct, that was trained on GretelAI public datasets. The fine-tuning process was performed using the QLORA metodology on a GPU A100 with 40 GB of RAM.
Model description
Model type: A 7B parameter fine-tuned on GretelAI public datasets.
Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well
Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
What is Lloro's intended use(s)?
Lloro is built for Text2SQL in Portuguese contexts .
Input : Text
Output : Text (Code)
Usage
Using an OpenAI compatible inference server (like vLLM)
from openai import OpenAI
client = OpenAI(
api_key="EMPTY",
base_url="http://localhost:8000/v1",
)
def generate_responses(instruction, client=client):
chat_response = client.chat.completions.create(
model=<model>,
messages=[
{"role": "system", "content": "Você escreve a instrução SQL que responde às perguntas feitas. Você NÃO FORNECE NENHUM COMENTÁRIO OU EXPLICAÇÃO sobre o que o código faz, apenas a instrução SQL terminando em ponto e vírgula. Você utiliza todos os comandos disponíveis na especificação SQL, como: [SELECT, WHERE, ORDER, LIMIT, CAST, AS, JOIN]."},
{"role": "user", "content": instruction},
]
)
return chat_response.choices[0].message.content
output = generate_responses(user_prompt)
Params
Training Parameters
Params | Training Data | Examples | Tokens | LR |
---|---|---|---|---|
8B | GretelAI public datasets + Synthetic Data | 102970 | 18.654.222 | 2e-4 |
Model Sources
GretelAI: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
Performance
Test Dataset
Model | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
---|---|---|---|---|---|---|---|
Llama 3 8B | 65.48% | 0.4583 | 0.6361 | 0.8815 | 0.8871 | 0.8835 | 0.8862 |
Lloro - SQL | 71.33% | 0.6512 | 0.7965 | 0.9458 | 0.9469 | 0.9459 | 0.9466 |
GPT - 3.5 Turbo | 67.52% | 0.6232 | 0.9967 | 0.9151 | 0.9152 | 0.9142 | 0.9175 |
Database Benchmark
Model | Score |
---|---|
Llama 3 - Base | 35.55% |
Lloro - SQL | 49.48% |
GPT - 3.5 Turbo | 46.15% |
Translated BIRD Benchmark - https://bird-bench.github.io/
Model | Score |
---|---|
Llama 3 - Base | 33.87% |
Lloro - SQL | 47.14% |
GPT - 3.5 Turbo | 42.14% |
Training Infos
The following hyperparameters were used during training:
Parameter | Value |
---|---|
learning_rate | 2e-4 |
weight_decay | 0.001 |
train_batch_size | 16 |
eval_batch_size | 8 |
seed | 42 |
optimizer | Adam - adamw_8bit |
lr_scheduler_type | cosine |
num_epochs | 4.0 |
QLoRA hyperparameters
The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:
Parameter | Value |
---|---|
lora_r | 64 |
lora_alpha | 128 |
lora_dropout | 0 |
Experiments
Model | Epochs | Overfitting | Final Epochs | Training Hours | CO2 Emission (Kg) |
---|---|---|---|---|---|
Llama 3 8B Instruct | 5 | Yes | 4 | 10.16 | 1.45 |
Framework versions
Library | Version |
---|---|
accelerate | 0.21.0 |
bitsandbytes | 0.42.0 |
Datasets | 2.14.3 |
peft | 0.4.0 |
Pytorch | 2.0.1 |
safetensors | 0.4.1 |
scikit-image | 0.22.0 |
scikit-learn | 1.3.2 |
Tokenizers | 0.14.1 |
Transformers | 4.37.2 |
trl | 0.4.7 |