|
--- |
|
datasets: |
|
- bigcode/commitpackft |
|
language: |
|
- en |
|
base_model: |
|
- Qwen/Qwen2.5-Coder-1.5B-Instruct |
|
pipeline_tag: text2text-generation |
|
--- |
|
# Purpose |
|
|
|
Used for generating high quality commit messages for a given git difference |
|
|
|
|
|
### Model Description |
|
|
|
Generated by fine tuning Qwen2.5-Coder-1.5B-Instruct on bigcode/commitpackft dataset for 2 epochs |
|
Trained on a total of 277 Languages |
|
Achieved a final training loss in the range of 1- 1.7 (due to data set not containing equal data rows for each language) |
|
For common languages(python, java ,javascripts,c etc) loss went for a minimum of 1.0335 |
|
|
|
|
|
## Environmental Impact |
|
|
|
- **Hardware Type:** geforce RTX 4060 TI - 16GB] |
|
- **Hours used:** 10 Hours |
|
- **Cloud Provider:** local |
|
|
|
|
|
### Results |
|
 |
|
 |
|
|
|
### Inference |
|
|
|
|
|
```python |
|
from llama_cpp import Llama |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="seniruk/commitGen-gguf", |
|
filename="commitGen.gguf", |
|
) |
|
|
|
diff="" #the git difference |
|
instruction= "" #the instruction --> 'create a commit message for given git difference' |
|
|
|
prompt = "{}{}".format(instruction,diff) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
output = llm.create_chat_completion( |
|
messages=messages, |
|
temperature=0.5 |
|
) |
|
|
|
llm_message = output['choices'][0]['message']['content'] |
|
|
|
print(llm_message) |
|
``` |