tags:
- mteb
model-index:
- name: piccolo-large-zh-v2
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson
value: 56.76055988260572
- type: cos_sim_spearman
value: 61.49271876861677
- type: euclidean_pearson
value: 59.14524585320711
- type: euclidean_spearman
value: 60.63579339225774
- type: manhattan_pearson
value: 59.14662752965445
- type: manhattan_spearman
value: 60.635190265737904
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 56.21706298831197
- type: cos_sim_spearman
value: 59.19831457688953
- type: euclidean_pearson
value: 62.37752017633299
- type: euclidean_spearman
value: 58.79400967473204
- type: manhattan_pearson
value: 62.37015943212308
- type: manhattan_spearman
value: 58.79232537600814
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 49.440000000000005
- type: f1
value: 46.67381446305019
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 70.99026329599994
- type: cos_sim_spearman
value: 72.87565357908989
- type: euclidean_pearson
value: 71.17690439270028
- type: euclidean_spearman
value: 72.50428109969029
- type: manhattan_pearson
value: 71.17262321033088
- type: manhattan_spearman
value: 72.49845447987437
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 57.92713421071616
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 48.096546680932235
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 89.31003741715936
- type: mrr
value: 91.38075396825397
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 90.13769781784876
- type: mrr
value: 92.14329365079365
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 26.931
- type: map_at_10
value: 40.647
- type: map_at_100
value: 42.519
- type: map_at_1000
value: 42.616
- type: map_at_3
value: 36.144999999999996
- type: map_at_5
value: 38.717
- type: mrr_at_1
value: 40.935
- type: mrr_at_10
value: 49.684
- type: mrr_at_100
value: 50.598
- type: mrr_at_1000
value: 50.632999999999996
- type: mrr_at_3
value: 47.07
- type: mrr_at_5
value: 48.49
- type: ndcg_at_1
value: 40.935
- type: ndcg_at_10
value: 47.583999999999996
- type: ndcg_at_100
value: 54.69199999999999
- type: ndcg_at_1000
value: 56.314
- type: ndcg_at_3
value: 41.973
- type: ndcg_at_5
value: 44.334
- type: precision_at_1
value: 40.935
- type: precision_at_10
value: 10.585
- type: precision_at_100
value: 1.637
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 23.881
- type: precision_at_5
value: 17.399
- type: recall_at_1
value: 26.931
- type: recall_at_10
value: 59.006
- type: recall_at_100
value: 88.247
- type: recall_at_1000
value: 99.045
- type: recall_at_3
value: 42.064
- type: recall_at_5
value: 49.266
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 86.08538785327721
- type: cos_sim_ap
value: 92.64373114205229
- type: cos_sim_f1
value: 86.89951395953432
- type: cos_sim_precision
value: 84.11378555798687
- type: cos_sim_recall
value: 89.87608136544307
- type: dot_accuracy
value: 72.66386049308478
- type: dot_ap
value: 81.053422935767
- type: dot_f1
value: 75.19933726830277
- type: dot_precision
value: 67.4907063197026
- type: dot_recall
value: 84.89595510872107
- type: euclidean_accuracy
value: 85.52014431749849
- type: euclidean_ap
value: 91.90647782899615
- type: euclidean_f1
value: 86.26361413647477
- type: euclidean_precision
value: 82.2071595001059
- type: euclidean_recall
value: 90.74117371989713
- type: manhattan_accuracy
value: 85.48406494287433
- type: manhattan_ap
value: 91.89657919524385
- type: manhattan_f1
value: 86.20413761572752
- type: manhattan_precision
value: 84.324686940966
- type: manhattan_recall
value: 88.16927753097966
- type: max_accuracy
value: 86.08538785327721
- type: max_ap
value: 92.64373114205229
- type: max_f1
value: 86.89951395953432
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 75.50099999999999
- type: map_at_10
value: 83.43
- type: map_at_100
value: 83.577
- type: map_at_1000
value: 83.57900000000001
- type: map_at_3
value: 82.06400000000001
- type: map_at_5
value: 82.88600000000001
- type: mrr_at_1
value: 75.869
- type: mrr_at_10
value: 83.536
- type: mrr_at_100
value: 83.682
- type: mrr_at_1000
value: 83.68299999999999
- type: mrr_at_3
value: 82.244
- type: mrr_at_5
value: 82.998
- type: ndcg_at_1
value: 75.764
- type: ndcg_at_10
value: 86.777
- type: ndcg_at_100
value: 87.36
- type: ndcg_at_1000
value: 87.424
- type: ndcg_at_3
value: 84.10300000000001
- type: ndcg_at_5
value: 85.532
- type: precision_at_1
value: 75.764
- type: precision_at_10
value: 9.8
- type: precision_at_100
value: 1.005
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 30.207
- type: precision_at_5
value: 18.82
- type: recall_at_1
value: 75.50099999999999
- type: recall_at_10
value: 96.997
- type: recall_at_100
value: 99.473
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 89.831
- type: recall_at_5
value: 93.256
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 27.094
- type: map_at_10
value: 82.418
- type: map_at_100
value: 85.05
- type: map_at_1000
value: 85.083
- type: map_at_3
value: 57.68600000000001
- type: map_at_5
value: 72.476
- type: mrr_at_1
value: 92.25
- type: mrr_at_10
value: 94.621
- type: mrr_at_100
value: 94.675
- type: mrr_at_1000
value: 94.677
- type: mrr_at_3
value: 94.375
- type: mrr_at_5
value: 94.52199999999999
- type: ndcg_at_1
value: 92.25
- type: ndcg_at_10
value: 89.13600000000001
- type: ndcg_at_100
value: 91.532
- type: ndcg_at_1000
value: 91.836
- type: ndcg_at_3
value: 88.50099999999999
- type: ndcg_at_5
value: 87.251
- type: precision_at_1
value: 92.25
- type: precision_at_10
value: 42.295
- type: precision_at_100
value: 4.812
- type: precision_at_1000
value: 0.48900000000000005
- type: precision_at_3
value: 79.167
- type: precision_at_5
value: 66.56
- type: recall_at_1
value: 27.094
- type: recall_at_10
value: 89.816
- type: recall_at_100
value: 97.855
- type: recall_at_1000
value: 99.384
- type: recall_at_3
value: 59.557
- type: recall_at_5
value: 76.395
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 53.6
- type: map_at_10
value: 62.985
- type: map_at_100
value: 63.532999999999994
- type: map_at_1000
value: 63.546
- type: map_at_3
value: 60.617
- type: map_at_5
value: 62.017
- type: mrr_at_1
value: 53.6
- type: mrr_at_10
value: 62.985
- type: mrr_at_100
value: 63.532999999999994
- type: mrr_at_1000
value: 63.546
- type: mrr_at_3
value: 60.617
- type: mrr_at_5
value: 62.017
- type: ndcg_at_1
value: 53.6
- type: ndcg_at_10
value: 67.755
- type: ndcg_at_100
value: 70.366
- type: ndcg_at_1000
value: 70.696
- type: ndcg_at_3
value: 62.89900000000001
- type: ndcg_at_5
value: 65.437
- type: precision_at_1
value: 53.6
- type: precision_at_10
value: 8.28
- type: precision_at_100
value: 0.9490000000000001
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 23.166999999999998
- type: precision_at_5
value: 15.14
- type: recall_at_1
value: 53.6
- type: recall_at_10
value: 82.8
- type: recall_at_100
value: 94.89999999999999
- type: recall_at_1000
value: 97.5
- type: recall_at_3
value: 69.5
- type: recall_at_5
value: 75.7
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 52.104655636783384
- type: f1
value: 41.025743582860514
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 88.57410881801127
- type: ap
value: 59.49612312498937
- type: f1
value: 83.70595013666741
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 74.00327736048256
- type: cos_sim_spearman
value: 79.5459672237356
- type: euclidean_pearson
value: 79.18300205389669
- type: euclidean_spearman
value: 79.21872988987533
- type: manhattan_pearson
value: 79.1715470733081
- type: manhattan_spearman
value: 79.20756273498812
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 66.94600000000001
- type: map_at_10
value: 75.947
- type: map_at_100
value: 76.268
- type: map_at_1000
value: 76.28
- type: map_at_3
value: 74.13300000000001
- type: map_at_5
value: 75.28399999999999
- type: mrr_at_1
value: 69.241
- type: mrr_at_10
value: 76.532
- type: mrr_at_100
value: 76.816
- type: mrr_at_1000
value: 76.827
- type: mrr_at_3
value: 74.95
- type: mrr_at_5
value: 75.957
- type: ndcg_at_1
value: 69.241
- type: ndcg_at_10
value: 79.54299999999999
- type: ndcg_at_100
value: 80.95
- type: ndcg_at_1000
value: 81.252
- type: ndcg_at_3
value: 76.119
- type: ndcg_at_5
value: 78.069
- type: precision_at_1
value: 69.241
- type: precision_at_10
value: 9.576
- type: precision_at_100
value: 1.026
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 28.571999999999996
- type: precision_at_5
value: 18.181
- type: recall_at_1
value: 66.94600000000001
- type: recall_at_10
value: 90.024
- type: recall_at_100
value: 96.3
- type: recall_at_1000
value: 98.656
- type: recall_at_3
value: 81.026
- type: recall_at_5
value: 85.658
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 77.71015467383997
- type: f1
value: 74.32345894845358
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 85.63214525891055
- type: f1
value: 84.65303466003252
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 55.50000000000001
- type: map_at_10
value: 61.66199999999999
- type: map_at_100
value: 62.13999999999999
- type: map_at_1000
value: 62.187000000000005
- type: map_at_3
value: 59.967000000000006
- type: map_at_5
value: 60.927
- type: mrr_at_1
value: 55.7
- type: mrr_at_10
value: 61.76199999999999
- type: mrr_at_100
value: 62.241
- type: mrr_at_1000
value: 62.287000000000006
- type: mrr_at_3
value: 60.06700000000001
- type: mrr_at_5
value: 61.027
- type: ndcg_at_1
value: 55.50000000000001
- type: ndcg_at_10
value: 64.878
- type: ndcg_at_100
value: 67.464
- type: ndcg_at_1000
value: 68.745
- type: ndcg_at_3
value: 61.367000000000004
- type: ndcg_at_5
value: 63.117999999999995
- type: precision_at_1
value: 55.50000000000001
- type: precision_at_10
value: 7.51
- type: precision_at_100
value: 0.878
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 21.8
- type: precision_at_5
value: 13.94
- type: recall_at_1
value: 55.50000000000001
- type: recall_at_10
value: 75.1
- type: recall_at_100
value: 87.8
- type: recall_at_1000
value: 97.89999999999999
- type: recall_at_3
value: 65.4
- type: recall_at_5
value: 69.69999999999999
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 33.386980266936106
- type: mrr
value: 32.11904761904762
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 79.08666666666666
- type: f1
value: 78.93142205976953
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 84.35300487276665
- type: cos_sim_ap
value: 87.83572265803564
- type: cos_sim_f1
value: 85.42713567839195
- type: cos_sim_precision
value: 81.49568552253116
- type: cos_sim_recall
value: 89.7571277719113
- type: dot_accuracy
value: 72.87493232268544
- type: dot_ap
value: 80.29032993894747
- type: dot_f1
value: 76.5938475256353
- type: dot_precision
value: 66.28086419753086
- type: dot_recall
value: 90.70749736008447
- type: euclidean_accuracy
value: 82.34975636166757
- type: euclidean_ap
value: 85.73873757468064
- type: euclidean_f1
value: 83.56713426853707
- type: euclidean_precision
value: 79.50428979980934
- type: euclidean_recall
value: 88.0675818373812
- type: manhattan_accuracy
value: 82.45804006497022
- type: manhattan_ap
value: 85.7176464290469
- type: manhattan_f1
value: 83.65095285857572
- type: manhattan_precision
value: 79.65616045845272
- type: manhattan_recall
value: 88.0675818373812
- type: max_accuracy
value: 84.35300487276665
- type: max_ap
value: 87.83572265803564
- type: max_f1
value: 85.42713567839195
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 94.61999999999999
- type: ap
value: 92.74140430219491
- type: f1
value: 94.60775857122515
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 39.75749234575995
- type: cos_sim_spearman
value: 46.48035295363829
- type: euclidean_pearson
value: 45.38711981599582
- type: euclidean_spearman
value: 46.13915356562481
- type: manhattan_pearson
value: 45.420770530489065
- type: manhattan_spearman
value: 46.179913441143775
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 44.02008249965321
- type: cos_sim_spearman
value: 45.906917552219156
- type: euclidean_pearson
value: 36.600317631983316
- type: euclidean_spearman
value: 41.97740958824762
- type: manhattan_pearson
value: 36.54329048509785
- type: manhattan_spearman
value: 41.91222171040451
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 60.97044608578288
- type: cos_sim_spearman
value: 63.76187490245927
- type: euclidean_pearson
value: 60.74245987426317
- type: euclidean_spearman
value: 63.32990713078846
- type: manhattan_pearson
value: 60.62422616577702
- type: manhattan_spearman
value: 63.256612476686826
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 76.28185867362305
- type: cos_sim_spearman
value: 78.71478656159289
- type: euclidean_pearson
value: 79.80734359535234
- type: euclidean_spearman
value: 79.85403491297063
- type: manhattan_pearson
value: 79.79454037962215
- type: manhattan_spearman
value: 79.82796402623201
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 67.14759526113295
- type: mrr
value: 77.36422096484723
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 28.177999999999997
- type: map_at_10
value: 78.77199999999999
- type: map_at_100
value: 82.365
- type: map_at_1000
value: 82.422
- type: map_at_3
value: 55.452999999999996
- type: map_at_5
value: 68.12700000000001
- type: mrr_at_1
value: 91.097
- type: mrr_at_10
value: 93.52000000000001
- type: mrr_at_100
value: 93.587
- type: mrr_at_1000
value: 93.589
- type: mrr_at_3
value: 93.136
- type: mrr_at_5
value: 93.381
- type: ndcg_at_1
value: 91.097
- type: ndcg_at_10
value: 86.136
- type: ndcg_at_100
value: 89.515
- type: ndcg_at_1000
value: 90.049
- type: ndcg_at_3
value: 87.41600000000001
- type: ndcg_at_5
value: 86.115
- type: precision_at_1
value: 91.097
- type: precision_at_10
value: 42.597
- type: precision_at_100
value: 5.043
- type: precision_at_1000
value: 0.517
- type: precision_at_3
value: 76.239
- type: precision_at_5
value: 63.93
- type: recall_at_1
value: 28.177999999999997
- type: recall_at_10
value: 85.182
- type: recall_at_100
value: 96.174
- type: recall_at_1000
value: 98.848
- type: recall_at_3
value: 57.150999999999996
- type: recall_at_5
value: 71.50999999999999
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 54.521
- type: f1
value: 52.53528052282081
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 74.2003249023509
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 68.4277378629746
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 58.599999999999994
- type: map_at_10
value: 68.671
- type: map_at_100
value: 69.148
- type: map_at_1000
value: 69.157
- type: map_at_3
value: 66.9
- type: map_at_5
value: 68.045
- type: mrr_at_1
value: 58.599999999999994
- type: mrr_at_10
value: 68.671
- type: mrr_at_100
value: 69.148
- type: mrr_at_1000
value: 69.157
- type: mrr_at_3
value: 66.9
- type: mrr_at_5
value: 68.045
- type: ndcg_at_1
value: 58.599999999999994
- type: ndcg_at_10
value: 73.099
- type: ndcg_at_100
value: 75.33
- type: ndcg_at_1000
value: 75.58500000000001
- type: ndcg_at_3
value: 69.502
- type: ndcg_at_5
value: 71.542
- type: precision_at_1
value: 58.599999999999994
- type: precision_at_10
value: 8.68
- type: precision_at_100
value: 0.97
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 25.667
- type: precision_at_5
value: 16.38
- type: recall_at_1
value: 58.599999999999994
- type: recall_at_10
value: 86.8
- type: recall_at_100
value: 97
- type: recall_at_1000
value: 99.1
- type: recall_at_3
value: 77
- type: recall_at_5
value: 81.89999999999999
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 89.58999999999999
- type: ap
value: 75.69899834265364
- type: f1
value: 88.2026184757175
新闻 | News
[2024-04-22]
piccolo-large-zh-v2 目前在C-MTEB榜单取得第一名,领先上一名BERT模型约1.9个点。
piccolo-large-zh-v2 currently ranks first on the C-MTEB list, leading the previous BERT model by about 1.9 points.
piccolo-large-zh-v2
piccolo-large-zh-v2 是一个通用embedding模型(中文), 由来自商汤科技的通用模型组完成训练,此次piccolo升级旨在更多地关注通用的下游finetune方式。我们将在近期更新我们的技术报告,同时详细技术细节也将在商汤4.23技术交流日披露: https://www.sensetime.com/cn
piccolo-large-zh-v2 is a Chinese embedding model developed by the general model group at SenseTime Research. This upgraded version of Piccolo aims to prioritize general downstream fine-tuning methods. We plan to release an updated technical report in the near future, and further technical details will be disclosed during the SenseTime Tech Day on April 23rd: https://www.sensetime.com/cn
Usage
目前该模型暂时需要通过API来进行访问: https://platform.sensenova.cn/doc?path=/chat/Embeddings/Embeddings.md
Currently, the model needs to be accessed through API: https://platform.sensenova.cn/doc?path=/chat/Embeddings/Embeddings.md