SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/bge-m3-kor-retrieval-bs16-checkpoint-849")
# Run inference
sentences = [
'전남지역의 석유와 화학제품은 왜 수출이 늘어나는 경향을 보였어',
'(2) 전남지역\n2013년중 전남지역 수출은 전년대비 1.2% 감소로 전환하였다. 품목별로는 석유(+9.3% → +3.8%) 및 화학제품(+1.2% → +7.1%)이 중국 등 해외수요확대로 증가세를 지속하였으나 철강금속(+1.8% → -8.6%)은 글로벌 공급과잉 및 중국의 저가 철강수출 확대로, 선박(+7.6% → -49.2%)은 수주물량이 급격히 줄어들면서 감소로 전환하였다. 전남지역 수입은 원유, 화학제품, 철강금속 등의 수입이 줄면서 전년대비 7.4% 감소로 전환하였다.',
'수출 증가세 지속\n1/4분기 중 수출은 전년동기대비 증가흐름을 지속하였다. 품목별로 보면 석유제품, 석유화학, 철강, 선박, 반도체, 자동차 등 대다수 품목에서 증가하였다. 석유제품은 글로벌 경기회복에 따른 에너지 수요 증가와 국제유가 급등으로 수출단가가 높은 상승세를 지속하면서 증가하였다. 석유화학도 중국, 아세안을 중심으로 합성수지, 고무 등의 수출이 큰 폭 증가한 데다 고유가로 인한 수출가격도 동반 상승하면서 증가세를 이어갔다. 철강은 건설, 조선 등 글로벌 전방산업의 수요 증대, 원자재가격 상승 및 중국 감산 등에 따른 수출단가 상승 등에 힘입어 증가세를 이어갔다. 선박은 1/4분기 중 인도물량이 확대됨에 따라 증가하였다. 반도체는 자동차 등 전방산업의 견조한 수요가 이어지는 가운데 전년동기대비로 높은 단가가 지속되면서 증가하였다. 자동차는 차량용 반도체 수급차질이 지속되었음에도 불구하고 글로벌 경기회복 흐름에 따라 수요가 늘어나면서 전년동기대비 소폭 증가하였다. 모니터링 결과 향후 수출은 증가세가 지속될 것으로 전망되었다. 석유화학 및 석유정제는 수출단가 상승과 전방산업의 수요확대 기조가 이어지면서 증가할 전망이다. 철강은 주요국 경기회복과 중국, 인도 등의 인프라 투자 확대 등으로 양호한 흐름을 이어갈 전망이다. 반도체는 글로벌 스마트폰 수요 회복, 디지털 전환 기조 등으로 견조한 증가세를 지속할 것으로 보인다. 자동차는 차량용 반도체 공급차질이 점차 완화되고 미국, 신흥시장을 중심으로 수요회복이 본격화됨에 따라 소폭 증가할 전망이다. 선박은 친환경 선박수요 지속, 글로별 교역 신장 등에도 불구하고 2021년 2/4분기 집중되었던 인도물량의 기저효과로 인해 감소할 것으로 보인다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16gradient_accumulation_steps
: 4learning_rate
: 3e-05warmup_ratio
: 0.05fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0011 | 1 | 3.7042 |
0.0021 | 2 | 4.4098 |
0.0032 | 3 | 4.5599 |
0.0042 | 4 | 4.5564 |
0.0053 | 5 | 5.3164 |
0.0064 | 6 | 4.9723 |
0.0074 | 7 | 5.2419 |
0.0085 | 8 | 3.6708 |
0.0095 | 9 | 3.4174 |
0.0106 | 10 | 3.7081 |
0.0117 | 11 | 3.5893 |
0.0127 | 12 | 2.8265 |
0.0138 | 13 | 1.8535 |
0.0149 | 14 | 2.2631 |
0.0159 | 15 | 1.6212 |
0.0170 | 16 | 1.3256 |
0.0180 | 17 | 3.1196 |
0.0191 | 18 | 2.6933 |
0.0202 | 19 | 2.7525 |
0.0212 | 20 | 1.8354 |
0.0223 | 21 | 1.5399 |
0.0233 | 22 | 1.2657 |
0.0244 | 23 | 1.5086 |
0.0255 | 24 | 1.4753 |
0.0265 | 25 | 1.4019 |
0.0276 | 26 | 1.0282 |
0.0286 | 27 | 1.1981 |
0.0297 | 28 | 1.1639 |
0.0308 | 29 | 1.064 |
0.0318 | 30 | 1.1106 |
0.0329 | 31 | 0.8862 |
0.0339 | 32 | 0.9067 |
0.0350 | 33 | 1.0234 |
0.0361 | 34 | 1.0057 |
0.0371 | 35 | 0.7404 |
0.0382 | 36 | 0.5796 |
0.0392 | 37 | 0.6 |
0.0403 | 38 | 0.6473 |
0.0414 | 39 | 0.7274 |
0.0424 | 40 | 0.5312 |
0.0435 | 41 | 0.6884 |
0.0446 | 42 | 0.4993 |
0.0456 | 43 | 0.5445 |
0.0467 | 44 | 0.2793 |
0.0477 | 45 | 0.4398 |
0.0488 | 46 | 0.4882 |
0.0499 | 47 | 0.3142 |
0.0509 | 48 | 0.253 |
0.0520 | 49 | 0.1723 |
0.0530 | 50 | 0.4482 |
0.0541 | 51 | 0.3704 |
0.0552 | 52 | 0.3844 |
0.0562 | 53 | 0.3141 |
0.0573 | 54 | 0.2717 |
0.0583 | 55 | 0.0936 |
0.0594 | 56 | 0.0795 |
0.0605 | 57 | 0.0754 |
0.0615 | 58 | 0.0839 |
0.0626 | 59 | 0.0739 |
0.0636 | 60 | 0.0622 |
0.0647 | 61 | 0.0541 |
0.0658 | 62 | 0.4835 |
0.0668 | 63 | 0.4849 |
0.0679 | 64 | 0.5093 |
0.0689 | 65 | 0.4725 |
0.0700 | 66 | 0.4658 |
0.0711 | 67 | 0.4257 |
0.0721 | 68 | 0.4656 |
0.0732 | 69 | 0.5188 |
0.0743 | 70 | 0.465 |
0.0753 | 71 | 0.5166 |
0.0764 | 72 | 0.4152 |
0.0774 | 73 | 0.4874 |
0.0785 | 74 | 0.435 |
0.0796 | 75 | 0.4698 |
0.0806 | 76 | 0.4075 |
0.0817 | 77 | 0.2881 |
0.0827 | 78 | 0.3375 |
0.0838 | 79 | 0.3183 |
0.0849 | 80 | 0.3046 |
0.0859 | 81 | 0.5192 |
0.0870 | 82 | 0.4832 |
0.0880 | 83 | 0.4467 |
0.0891 | 84 | 0.3109 |
0.0902 | 85 | 0.4108 |
0.0912 | 86 | 0.3034 |
0.0923 | 87 | 0.2636 |
0.0933 | 88 | 0.2169 |
0.0944 | 89 | 0.2991 |
0.0955 | 90 | 0.2901 |
0.0965 | 91 | 0.335 |
0.0976 | 92 | 0.3621 |
0.0986 | 93 | 0.2661 |
0.0997 | 94 | 0.3448 |
0.1008 | 95 | 0.1964 |
0.1018 | 96 | 0.2323 |
0.1029 | 97 | 0.2856 |
0.1040 | 98 | 0.2986 |
0.1050 | 99 | 0.2628 |
0.1061 | 100 | 0.2865 |
0.1071 | 101 | 0.2288 |
0.1082 | 102 | 0.208 |
0.1093 | 103 | 0.2074 |
0.1103 | 104 | 0.1906 |
0.1114 | 105 | 0.1639 |
0.1124 | 106 | 0.1597 |
0.1135 | 107 | 0.1896 |
0.1146 | 108 | 0.1387 |
0.1156 | 109 | 0.1281 |
0.1167 | 110 | 0.2742 |
0.1177 | 111 | 0.1787 |
0.1188 | 112 | 0.1449 |
0.1199 | 113 | 0.1114 |
0.1209 | 114 | 0.1889 |
0.1220 | 115 | 0.1044 |
0.1230 | 116 | 0.2556 |
0.1241 | 117 | 0.2081 |
0.1252 | 118 | 0.2649 |
0.1262 | 119 | 0.3898 |
0.1273 | 120 | 0.6489 |
0.1283 | 121 | 0.6267 |
0.1294 | 122 | 0.6013 |
0.1305 | 123 | 0.5391 |
0.1315 | 124 | 0.5176 |
0.1326 | 125 | 0.4483 |
0.1337 | 126 | 0.4734 |
0.1347 | 127 | 0.6635 |
0.1358 | 128 | 0.3238 |
0.1368 | 129 | 0.1651 |
0.1379 | 130 | 0.4351 |
0.1390 | 131 | 0.2721 |
0.1400 | 132 | 0.2922 |
0.1411 | 133 | 0.3631 |
0.1421 | 134 | 0.4333 |
0.1432 | 135 | 0.2805 |
0.1443 | 136 | 0.0546 |
0.1453 | 137 | 0.0316 |
0.1464 | 138 | 0.0278 |
0.1474 | 139 | 0.0151 |
0.1485 | 140 | 0.0177 |
0.1496 | 141 | 0.0247 |
0.1506 | 142 | 0.0168 |
0.1517 | 143 | 0.0278 |
0.1527 | 144 | 0.0422 |
0.1538 | 145 | 0.0363 |
0.1549 | 146 | 0.0484 |
0.1559 | 147 | 0.0326 |
0.1570 | 148 | 0.009 |
0.1580 | 149 | 0.0216 |
0.1591 | 150 | 0.005 |
0.1602 | 151 | 0.0514 |
0.1612 | 152 | 0.0131 |
0.1623 | 153 | 0.0145 |
0.1634 | 154 | 0.0246 |
0.1644 | 155 | 0.0111 |
0.1655 | 156 | 0.0184 |
0.1665 | 157 | 0.0168 |
0.1676 | 158 | 0.0055 |
0.1687 | 159 | 0.0091 |
0.1697 | 160 | 0.0363 |
0.1708 | 161 | 0.0039 |
0.1718 | 162 | 0.0119 |
0.1729 | 163 | 0.0284 |
0.1740 | 164 | 0.0055 |
0.1750 | 165 | 0.0193 |
0.1761 | 166 | 0.0138 |
0.1771 | 167 | 0.0099 |
0.1782 | 168 | 0.026 |
0.1793 | 169 | 0.025 |
0.1803 | 170 | 0.0318 |
0.1814 | 171 | 0.0088 |
0.1824 | 172 | 0.0137 |
0.1835 | 173 | 0.0158 |
0.1846 | 174 | 0.0271 |
0.1856 | 175 | 0.0181 |
0.1867 | 176 | 0.026 |
0.1877 | 177 | 0.0207 |
0.1888 | 178 | 0.009 |
0.1899 | 179 | 0.0117 |
0.1909 | 180 | 0.0265 |
0.1920 | 181 | 0.0151 |
0.1931 | 182 | 0.0254 |
0.1941 | 183 | 0.0101 |
0.1952 | 184 | 0.0096 |
0.1962 | 185 | 0.0225 |
0.1973 | 186 | 0.0122 |
0.1984 | 187 | 0.0184 |
0.1994 | 188 | 0.0326 |
0.2005 | 189 | 0.0163 |
0.2015 | 190 | 0.0257 |
0.2026 | 191 | 0.0126 |
0.2037 | 192 | 0.0121 |
0.2047 | 193 | 0.0251 |
0.2058 | 194 | 0.0145 |
0.2068 | 195 | 0.0244 |
0.2079 | 196 | 0.0196 |
0.2090 | 197 | 0.0121 |
0.2100 | 198 | 0.0145 |
0.2111 | 199 | 0.0084 |
0.2121 | 200 | 0.013 |
0.2132 | 201 | 0.0123 |
0.2143 | 202 | 0.009 |
0.2153 | 203 | 0.0248 |
0.2164 | 204 | 0.0236 |
0.2174 | 205 | 0.0195 |
0.2185 | 206 | 0.0206 |
0.2196 | 207 | 0.0201 |
0.2206 | 208 | 0.0185 |
0.2217 | 209 | 0.0206 |
0.2228 | 210 | 0.0233 |
0.2238 | 211 | 0.0429 |
0.2249 | 212 | 0.0161 |
0.2259 | 213 | 0.0334 |
0.2270 | 214 | 0.0128 |
0.2281 | 215 | 0.0273 |
0.2291 | 216 | 0.0228 |
0.2302 | 217 | 0.0199 |
0.2312 | 218 | 0.0154 |
0.2323 | 219 | 0.0051 |
0.2334 | 220 | 0.018 |
0.2344 | 221 | 0.0194 |
0.2355 | 222 | 0.0095 |
0.2365 | 223 | 0.0058 |
0.2376 | 224 | 0.0285 |
0.2387 | 225 | 0.0107 |
0.2397 | 226 | 0.0196 |
0.2408 | 227 | 0.0311 |
0.2418 | 228 | 0.0198 |
0.2429 | 229 | 0.0126 |
0.2440 | 230 | 0.0168 |
0.2450 | 231 | 0.0069 |
0.2461 | 232 | 0.0112 |
0.2471 | 233 | 0.0133 |
0.2482 | 234 | 0.0234 |
0.2493 | 235 | 0.0174 |
0.2503 | 236 | 0.0133 |
0.2514 | 237 | 0.0068 |
0.2525 | 238 | 0.0213 |
0.2535 | 239 | 0.0197 |
0.2546 | 240 | 0.011 |
0.2556 | 241 | 0.0226 |
0.2567 | 242 | 0.0305 |
0.2578 | 243 | 0.0198 |
0.2588 | 244 | 0.0318 |
0.2599 | 245 | 0.024 |
0.2609 | 246 | 0.0349 |
0.2620 | 247 | 0.1405 |
0.2631 | 248 | 0.1075 |
0.2641 | 249 | 0.1303 |
0.2652 | 250 | 0.1108 |
0.2662 | 251 | 0.0913 |
0.2673 | 252 | 0.081 |
0.2684 | 253 | 0.0516 |
0.2694 | 254 | 0.082 |
0.2705 | 255 | 0.0558 |
0.2715 | 256 | 0.05 |
0.2726 | 257 | 0.0829 |
0.2737 | 258 | 0.1127 |
0.2747 | 259 | 0.0559 |
0.2758 | 260 | 0.1117 |
0.2768 | 261 | 0.06 |
0.2779 | 262 | 0.0525 |
0.2790 | 263 | 0.0488 |
0.2800 | 264 | 0.0403 |
0.2811 | 265 | 0.0978 |
0.2822 | 266 | 0.0404 |
0.2832 | 267 | 0.0481 |
0.2843 | 268 | 0.0357 |
0.2853 | 269 | 0.0327 |
0.2864 | 270 | 0.0615 |
0.2875 | 271 | 0.0662 |
0.2885 | 272 | 0.0546 |
0.2896 | 273 | 0.0523 |
0.2906 | 274 | 0.0436 |
0.2917 | 275 | 0.0509 |
0.2928 | 276 | 0.0279 |
0.2938 | 277 | 0.0405 |
0.2949 | 278 | 0.0608 |
0.2959 | 279 | 0.0223 |
0.2970 | 280 | 0.0103 |
0.2981 | 281 | 0.0432 |
0.2991 | 282 | 0.0491 |
0.3002 | 283 | 0.0237 |
0.3012 | 284 | 0.0458 |
0.3023 | 285 | 0.0362 |
0.3034 | 286 | 0.0235 |
0.3044 | 287 | 0.025 |
0.3055 | 288 | 0.0354 |
0.3065 | 289 | 0.0164 |
0.3076 | 290 | 0.0323 |
0.3087 | 291 | 0.0334 |
0.3097 | 292 | 0.019 |
0.3108 | 293 | 0.0246 |
0.3119 | 294 | 0.0243 |
0.3129 | 295 | 0.0373 |
0.3140 | 296 | 0.0247 |
0.3150 | 297 | 0.017 |
0.3161 | 298 | 0.0158 |
0.3172 | 299 | 0.0447 |
0.3182 | 300 | 0.036 |
0.3193 | 301 | 0.0467 |
0.3203 | 302 | 0.0498 |
0.3214 | 303 | 0.0371 |
0.3225 | 304 | 0.0367 |
0.3235 | 305 | 0.0696 |
0.3246 | 306 | 0.0432 |
0.3256 | 307 | 0.0472 |
0.3267 | 308 | 0.0361 |
0.3278 | 309 | 0.0282 |
0.3288 | 310 | 0.0427 |
0.3299 | 311 | 0.0264 |
0.3309 | 312 | 0.0857 |
0.3320 | 313 | 0.0697 |
0.3331 | 314 | 0.09 |
0.3341 | 315 | 0.0509 |
0.3352 | 316 | 0.0438 |
0.3363 | 317 | 0.0451 |
0.3373 | 318 | 0.0337 |
0.3384 | 319 | 0.032 |
0.3394 | 320 | 0.0299 |
0.3405 | 321 | 0.0262 |
0.3416 | 322 | 0.0394 |
0.3426 | 323 | 0.0358 |
0.3437 | 324 | 0.0296 |
0.3447 | 325 | 0.029 |
0.3458 | 326 | 0.0235 |
0.3469 | 327 | 0.0541 |
0.3479 | 328 | 0.0502 |
0.3490 | 329 | 0.0566 |
0.3500 | 330 | 0.059 |
0.3511 | 331 | 0.0526 |
0.3522 | 332 | 0.0142 |
0.3532 | 333 | 0.0502 |
0.3543 | 334 | 0.0188 |
0.3553 | 335 | 0.0348 |
0.3564 | 336 | 0.0369 |
0.3575 | 337 | 0.0171 |
0.3585 | 338 | 0.0251 |
0.3596 | 339 | 0.0594 |
0.3606 | 340 | 0.0661 |
0.3617 | 341 | 0.0671 |
0.3628 | 342 | 0.0492 |
0.3638 | 343 | 0.0712 |
0.3649 | 344 | 0.0678 |
0.3660 | 345 | 0.0722 |
0.3670 | 346 | 0.0464 |
0.3681 | 347 | 0.0373 |
0.3691 | 348 | 0.0879 |
0.3702 | 349 | 0.0712 |
0.3713 | 350 | 0.0527 |
0.3723 | 351 | 0.0927 |
0.3734 | 352 | 0.0562 |
0.3744 | 353 | 0.0676 |
0.3755 | 354 | 0.0603 |
0.3766 | 355 | 0.0529 |
0.3776 | 356 | 0.1075 |
0.3787 | 357 | 0.0553 |
0.3797 | 358 | 0.048 |
0.3808 | 359 | 0.0347 |
0.3819 | 360 | 0.0132 |
0.3829 | 361 | 0.0364 |
0.3840 | 362 | 0.0521 |
0.3850 | 363 | 0.0636 |
0.3861 | 364 | 0.0467 |
0.3872 | 365 | 0.0391 |
0.3882 | 366 | 0.0151 |
0.3893 | 367 | 0.017 |
0.3903 | 368 | 0.0415 |
0.3914 | 369 | 0.0307 |
0.3925 | 370 | 0.077 |
0.3935 | 371 | 0.0317 |
0.3946 | 372 | 0.0395 |
0.3957 | 373 | 0.0475 |
0.3967 | 374 | 0.0451 |
0.3978 | 375 | 0.0224 |
0.3988 | 376 | 0.0427 |
0.3999 | 377 | 0.0337 |
0.4010 | 378 | 0.0198 |
0.4020 | 379 | 0.0716 |
0.4031 | 380 | 0.0342 |
0.4041 | 381 | 0.0718 |
0.4052 | 382 | 0.0783 |
0.4063 | 383 | 0.0702 |
0.4073 | 384 | 0.0365 |
0.4084 | 385 | 0.0575 |
0.4094 | 386 | 0.0278 |
0.4105 | 387 | 0.0531 |
0.4116 | 388 | 0.0521 |
0.4126 | 389 | 0.0817 |
0.4137 | 390 | 0.0484 |
0.4147 | 391 | 0.0642 |
0.4158 | 392 | 0.0374 |
0.4169 | 393 | 0.0504 |
0.4179 | 394 | 0.0353 |
0.4190 | 395 | 0.0556 |
0.4200 | 396 | 0.0354 |
0.4211 | 397 | 0.0609 |
0.4222 | 398 | 0.056 |
0.4232 | 399 | 0.042 |
0.4243 | 400 | 0.0266 |
0.4254 | 401 | 0.0461 |
0.4264 | 402 | 0.0674 |
0.4275 | 403 | 0.0293 |
0.4285 | 404 | 0.0489 |
0.4296 | 405 | 0.0546 |
0.4307 | 406 | 0.0649 |
0.4317 | 407 | 0.039 |
0.4328 | 408 | 0.0358 |
0.4338 | 409 | 0.0515 |
0.4349 | 410 | 0.026 |
0.4360 | 411 | 0.0476 |
0.4370 | 412 | 0.0736 |
0.4381 | 413 | 0.0479 |
0.4391 | 414 | 0.0742 |
0.4402 | 415 | 0.0435 |
0.4413 | 416 | 0.0585 |
0.4423 | 417 | 0.051 |
0.4434 | 418 | 0.0374 |
0.4444 | 419 | 0.0271 |
0.4455 | 420 | 0.0397 |
0.4466 | 421 | 0.0555 |
0.4476 | 422 | 0.0406 |
0.4487 | 423 | 0.0282 |
0.4497 | 424 | 0.0225 |
0.4508 | 425 | 0.0303 |
0.4519 | 426 | 0.0763 |
0.4529 | 427 | 0.0438 |
0.4540 | 428 | 0.0521 |
0.4551 | 429 | 0.0415 |
0.4561 | 430 | 0.0796 |
0.4572 | 431 | 0.0703 |
0.4582 | 432 | 0.0754 |
0.4593 | 433 | 0.131 |
0.4604 | 434 | 0.0805 |
0.4614 | 435 | 0.0816 |
0.4625 | 436 | 0.096 |
0.4635 | 437 | 0.119 |
0.4646 | 438 | 0.0648 |
0.4657 | 439 | 0.0961 |
0.4667 | 440 | 0.0612 |
0.4678 | 441 | 0.036 |
0.4688 | 442 | 0.2117 |
0.4699 | 443 | 0.1767 |
0.4710 | 444 | 0.2005 |
0.4720 | 445 | 0.1606 |
0.4731 | 446 | 0.1282 |
0.4741 | 447 | 0.1721 |
0.4752 | 448 | 0.1293 |
0.4763 | 449 | 0.1211 |
0.4773 | 450 | 0.1445 |
0.4784 | 451 | 0.1381 |
0.4794 | 452 | 0.1315 |
0.4805 | 453 | 0.0651 |
0.4816 | 454 | 0.0783 |
0.4826 | 455 | 0.1153 |
0.4837 | 456 | 0.1458 |
0.4848 | 457 | 0.0817 |
0.4858 | 458 | 0.1302 |
0.4869 | 459 | 0.1129 |
0.4879 | 460 | 0.0853 |
0.4890 | 461 | 0.0934 |
0.4901 | 462 | 0.0802 |
0.4911 | 463 | 0.0876 |
0.4922 | 464 | 0.0927 |
0.4932 | 465 | 0.1007 |
0.4943 | 466 | 0.0904 |
0.4954 | 467 | 0.0951 |
0.4964 | 468 | 0.0582 |
0.4975 | 469 | 0.0722 |
0.4985 | 470 | 0.0545 |
0.4996 | 471 | 0.0802 |
0.5007 | 472 | 0.075 |
0.5017 | 473 | 0.058 |
0.5028 | 474 | 0.0583 |
0.5038 | 475 | 0.0737 |
0.5049 | 476 | 0.0371 |
0.5060 | 477 | 0.0896 |
0.5070 | 478 | 0.0999 |
0.5081 | 479 | 0.1346 |
0.5091 | 480 | 0.1087 |
0.5102 | 481 | 0.1317 |
0.5113 | 482 | 0.0484 |
0.5123 | 483 | 0.0754 |
0.5134 | 484 | 0.0845 |
0.5145 | 485 | 0.0571 |
0.5155 | 486 | 0.0698 |
0.5166 | 487 | 0.0715 |
0.5176 | 488 | 0.1011 |
0.5187 | 489 | 0.0773 |
0.5198 | 490 | 0.0657 |
0.5208 | 491 | 0.075 |
0.5219 | 492 | 0.1186 |
0.5229 | 493 | 0.0799 |
0.5240 | 494 | 0.1062 |
0.5251 | 495 | 0.0814 |
0.5261 | 496 | 0.1071 |
0.5272 | 497 | 0.127 |
0.5282 | 498 | 0.0792 |
0.5293 | 499 | 0.0559 |
0.5304 | 500 | 0.0813 |
0.5314 | 501 | 0.0822 |
0.5325 | 502 | 0.0704 |
0.5335 | 503 | 0.0919 |
0.5346 | 504 | 0.0927 |
0.5357 | 505 | 0.0851 |
0.5367 | 506 | 0.0766 |
0.5378 | 507 | 0.0919 |
0.5388 | 508 | 0.0489 |
0.5399 | 509 | 0.0491 |
0.5410 | 510 | 0.0813 |
0.5420 | 511 | 0.0763 |
0.5431 | 512 | 0.0736 |
0.5442 | 513 | 0.0588 |
0.5452 | 514 | 0.057 |
0.5463 | 515 | 0.0662 |
0.5473 | 516 | 0.0859 |
0.5484 | 517 | 0.0824 |
0.5495 | 518 | 0.0548 |
0.5505 | 519 | 0.0565 |
0.5516 | 520 | 0.0938 |
0.5526 | 521 | 0.0796 |
0.5537 | 522 | 0.0891 |
0.5548 | 523 | 0.0975 |
0.5558 | 524 | 0.0772 |
0.5569 | 525 | 0.0548 |
0.5579 | 526 | 0.0508 |
0.5590 | 527 | 0.0857 |
0.5601 | 528 | 0.0755 |
0.5611 | 529 | 0.0851 |
0.5622 | 530 | 0.0695 |
0.5632 | 531 | 0.0711 |
0.5643 | 532 | 0.1109 |
0.5654 | 533 | 0.048 |
0.5664 | 534 | 0.0823 |
0.5675 | 535 | 0.0609 |
0.5685 | 536 | 0.0701 |
0.5696 | 537 | 0.0722 |
0.5707 | 538 | 0.1006 |
0.5717 | 539 | 0.0827 |
0.5728 | 540 | 0.0852 |
0.5739 | 541 | 0.1153 |
0.5749 | 542 | 0.078 |
0.5760 | 543 | 0.0584 |
0.5770 | 544 | 0.0766 |
0.5781 | 545 | 0.0441 |
0.5792 | 546 | 0.0858 |
0.5802 | 547 | 0.0984 |
0.5813 | 548 | 0.0931 |
0.5823 | 549 | 0.1091 |
0.5834 | 550 | 0.0704 |
0.5845 | 551 | 0.0765 |
0.5855 | 552 | 0.0689 |
0.5866 | 553 | 0.0776 |
0.5876 | 554 | 0.0648 |
0.5887 | 555 | 0.1011 |
0.5898 | 556 | 0.0574 |
0.5908 | 557 | 0.1231 |
0.5919 | 558 | 0.0598 |
0.5929 | 559 | 0.04 |
0.5940 | 560 | 0.0412 |
0.5951 | 561 | 0.0644 |
0.5961 | 562 | 0.0408 |
0.5972 | 563 | 0.0597 |
0.5982 | 564 | 0.0455 |
0.5993 | 565 | 0.0356 |
0.6004 | 566 | 0.0267 |
0.6014 | 567 | 0.063 |
0.6025 | 568 | 0.0683 |
0.6036 | 569 | 0.0576 |
0.6046 | 570 | 0.0473 |
0.6057 | 571 | 0.0728 |
0.6067 | 572 | 0.0411 |
0.6078 | 573 | 0.0459 |
0.6089 | 574 | 0.0538 |
0.6099 | 575 | 0.0431 |
0.6110 | 576 | 0.0592 |
0.6120 | 577 | 0.0717 |
0.6131 | 578 | 0.0897 |
0.6142 | 579 | 0.0537 |
0.6152 | 580 | 0.0603 |
0.6163 | 581 | 0.1405 |
0.6173 | 582 | 0.1461 |
0.6184 | 583 | 0.0665 |
0.6195 | 584 | 0.0783 |
0.6205 | 585 | 0.0403 |
0.6216 | 586 | 0.0407 |
0.6226 | 587 | 0.0896 |
0.6237 | 588 | 0.0875 |
0.6248 | 589 | 0.11 |
0.6258 | 590 | 0.1066 |
0.6269 | 591 | 0.0471 |
0.6280 | 592 | 0.0338 |
0.6290 | 593 | 0.0524 |
0.6301 | 594 | 0.0563 |
0.6311 | 595 | 0.0526 |
0.6322 | 596 | 0.0325 |
0.6333 | 597 | 0.0602 |
0.6343 | 598 | 0.0395 |
0.6354 | 599 | 0.0545 |
0.6364 | 600 | 0.0713 |
0.6375 | 601 | 0.0402 |
0.6386 | 602 | 0.0399 |
0.6396 | 603 | 0.0415 |
0.6407 | 604 | 0.0536 |
0.6417 | 605 | 0.035 |
0.6428 | 606 | 0.044 |
0.6439 | 607 | 0.0502 |
0.6449 | 608 | 0.0209 |
0.6460 | 609 | 0.0426 |
0.6470 | 610 | 0.0364 |
0.6481 | 611 | 0.0529 |
0.6492 | 612 | 0.0651 |
0.6502 | 613 | 0.0418 |
0.6513 | 614 | 0.0562 |
0.6523 | 615 | 0.0408 |
0.6534 | 616 | 0.0242 |
0.6545 | 617 | 0.0265 |
0.6555 | 618 | 0.0309 |
0.6566 | 619 | 0.0463 |
0.6577 | 620 | 0.0256 |
0.6587 | 621 | 0.0368 |
0.6598 | 622 | 0.0253 |
0.6608 | 623 | 0.0444 |
0.6619 | 624 | 0.0628 |
0.6630 | 625 | 0.0414 |
0.6640 | 626 | 0.0244 |
0.6651 | 627 | 0.0205 |
0.6661 | 628 | 0.0162 |
0.6672 | 629 | 0.0166 |
0.6683 | 630 | 0.0281 |
0.6693 | 631 | 0.0252 |
0.6704 | 632 | 0.0192 |
0.6714 | 633 | 0.0223 |
0.6725 | 634 | 0.0141 |
0.6736 | 635 | 0.0165 |
0.6746 | 636 | 0.0314 |
0.6757 | 637 | 0.1062 |
0.6767 | 638 | 0.0371 |
0.6778 | 639 | 0.015 |
0.6789 | 640 | 0.0301 |
0.6799 | 641 | 0.0417 |
0.6810 | 642 | 0.0593 |
0.6820 | 643 | 0.0399 |
0.6831 | 644 | 0.0126 |
0.6842 | 645 | 0.0047 |
0.6852 | 646 | 0.0013 |
0.6863 | 647 | 0.0067 |
0.6874 | 648 | 0.0019 |
0.6884 | 649 | 0.0154 |
0.6895 | 650 | 0.0006 |
0.6905 | 651 | 0.0504 |
0.6916 | 652 | 0.0159 |
0.6927 | 653 | 0.0198 |
0.6937 | 654 | 0.2964 |
0.6948 | 655 | 0.5783 |
0.6958 | 656 | 0.4341 |
0.6969 | 657 | 0.3179 |
0.6980 | 658 | 0.3856 |
0.6990 | 659 | 0.4783 |
0.7001 | 660 | 0.3014 |
0.7011 | 661 | 0.3303 |
0.7022 | 662 | 0.358 |
0.7033 | 663 | 0.4306 |
0.7043 | 664 | 0.4152 |
0.7054 | 665 | 0.2776 |
0.7064 | 666 | 0.288 |
0.7075 | 667 | 0.2787 |
0.7086 | 668 | 0.2555 |
0.7096 | 669 | 0.2825 |
0.7107 | 670 | 0.2834 |
0.7117 | 671 | 0.2461 |
0.7128 | 672 | 0.2625 |
0.7139 | 673 | 0.2299 |
0.7149 | 674 | 0.2478 |
0.7160 | 675 | 0.2339 |
0.7171 | 676 | 0.3259 |
0.7181 | 677 | 0.4917 |
0.7192 | 678 | 0.231 |
0.7202 | 679 | 0.1833 |
0.7213 | 680 | 0.1768 |
0.7224 | 681 | 0.1955 |
0.7234 | 682 | 0.235 |
0.7245 | 683 | 0.224 |
0.7255 | 684 | 0.2083 |
0.7266 | 685 | 0.2632 |
0.7277 | 686 | 0.1705 |
0.7287 | 687 | 0.239 |
0.7298 | 688 | 0.2403 |
0.7308 | 689 | 0.3655 |
0.7319 | 690 | 0.3451 |
0.7330 | 691 | 0.2554 |
0.7340 | 692 | 0.3059 |
0.7351 | 693 | 0.2546 |
0.7361 | 694 | 0.2133 |
0.7372 | 695 | 0.3031 |
0.7383 | 696 | 0.1978 |
0.7393 | 697 | 0.2051 |
0.7404 | 698 | 0.1882 |
0.7414 | 699 | 0.2374 |
0.7425 | 700 | 0.2157 |
0.7436 | 701 | 0.2917 |
0.7446 | 702 | 0.1717 |
0.7457 | 703 | 0.1438 |
0.7468 | 704 | 0.1678 |
0.7478 | 705 | 0.2295 |
0.7489 | 706 | 0.1697 |
0.7499 | 707 | 0.2032 |
0.7510 | 708 | 0.1568 |
0.7521 | 709 | 0.1483 |
0.7531 | 710 | 0.1863 |
0.7542 | 711 | 0.1585 |
0.7552 | 712 | 0.16 |
0.7563 | 713 | 0.1809 |
0.7574 | 714 | 0.1599 |
0.7584 | 715 | 0.1851 |
0.7595 | 716 | 0.1722 |
0.7605 | 717 | 0.1718 |
0.7616 | 718 | 0.182 |
0.7627 | 719 | 0.1263 |
0.7637 | 720 | 0.1608 |
0.7648 | 721 | 0.1589 |
0.7658 | 722 | 0.1615 |
0.7669 | 723 | 0.1385 |
0.7680 | 724 | 0.1626 |
0.7690 | 725 | 0.1592 |
0.7701 | 726 | 0.1405 |
0.7711 | 727 | 0.1793 |
0.7722 | 728 | 0.1639 |
0.7733 | 729 | 0.2661 |
0.7743 | 730 | 0.1306 |
0.7754 | 731 | 0.1914 |
0.7765 | 732 | 0.1682 |
0.7775 | 733 | 0.2162 |
0.7786 | 734 | 0.1439 |
0.7796 | 735 | 0.1177 |
0.7807 | 736 | 0.1595 |
0.7818 | 737 | 0.1303 |
0.7828 | 738 | 0.2224 |
0.7839 | 739 | 0.1414 |
0.7849 | 740 | 0.1395 |
0.7860 | 741 | 0.1238 |
0.7871 | 742 | 0.1319 |
0.7881 | 743 | 0.2027 |
0.7892 | 744 | 0.0817 |
0.7902 | 745 | 0.101 |
0.7913 | 746 | 0.1914 |
0.7924 | 747 | 0.1235 |
0.7934 | 748 | 0.1635 |
0.7945 | 749 | 0.1551 |
0.7955 | 750 | 0.2518 |
0.7966 | 751 | 0.1477 |
0.7977 | 752 | 0.1588 |
0.7987 | 753 | 0.1384 |
0.7998 | 754 | 0.1724 |
0.8008 | 755 | 0.1841 |
0.8019 | 756 | 0.1639 |
0.8030 | 757 | 0.1974 |
0.8040 | 758 | 0.066 |
0.8051 | 759 | 0.1331 |
0.8062 | 760 | 0.1444 |
0.8072 | 761 | 0.1243 |
0.8083 | 762 | 0.1583 |
0.8093 | 763 | 0.1378 |
0.8104 | 764 | 0.1309 |
0.8115 | 765 | 0.1588 |
0.8125 | 766 | 0.0926 |
0.8136 | 767 | 0.1255 |
0.8146 | 768 | 0.0968 |
0.8157 | 769 | 0.1393 |
0.8168 | 770 | 0.1094 |
0.8178 | 771 | 0.0904 |
0.8189 | 772 | 0.1572 |
0.8199 | 773 | 0.0711 |
0.8210 | 774 | 0.1014 |
0.8221 | 775 | 0.1613 |
0.8231 | 776 | 0.1737 |
0.8242 | 777 | 0.1312 |
0.8252 | 778 | 0.1142 |
0.8263 | 779 | 0.1416 |
0.8274 | 780 | 0.0773 |
0.8284 | 781 | 0.1457 |
0.8295 | 782 | 0.1125 |
0.8305 | 783 | 0.0863 |
0.8316 | 784 | 0.0884 |
0.8327 | 785 | 0.1128 |
0.8337 | 786 | 0.137 |
0.8348 | 787 | 0.1402 |
0.8359 | 788 | 0.0916 |
0.8369 | 789 | 0.129 |
0.8380 | 790 | 0.0848 |
0.8390 | 791 | 0.1328 |
0.8401 | 792 | 0.1102 |
0.8412 | 793 | 0.0634 |
0.8422 | 794 | 0.1209 |
0.8433 | 795 | 0.0593 |
0.8443 | 796 | 0.1537 |
0.8454 | 797 | 0.118 |
0.8465 | 798 | 0.2072 |
0.8475 | 799 | 0.0652 |
0.8486 | 800 | 0.0991 |
0.8496 | 801 | 0.1198 |
0.8507 | 802 | 0.0435 |
0.8518 | 803 | 0.0973 |
0.8528 | 804 | 0.1537 |
0.8539 | 805 | 0.0665 |
0.8549 | 806 | 0.0811 |
0.8560 | 807 | 0.093 |
0.8571 | 808 | 0.0862 |
0.8581 | 809 | 0.1061 |
0.8592 | 810 | 0.1301 |
0.8602 | 811 | 0.1807 |
0.8613 | 812 | 0.1437 |
0.8624 | 813 | 0.1105 |
0.8634 | 814 | 0.1493 |
0.8645 | 815 | 0.1062 |
0.8656 | 816 | 0.1005 |
0.8666 | 817 | 0.1121 |
0.8677 | 818 | 0.0767 |
0.8687 | 819 | 0.0823 |
0.8698 | 820 | 0.1009 |
0.8709 | 821 | 0.1006 |
0.8719 | 822 | 0.1404 |
0.8730 | 823 | 0.1079 |
0.8740 | 824 | 0.1414 |
0.8751 | 825 | 0.0947 |
0.8762 | 826 | 0.0827 |
0.8772 | 827 | 0.116 |
0.8783 | 828 | 0.1462 |
0.8793 | 829 | 0.1431 |
0.8804 | 830 | 0.0911 |
0.8815 | 831 | 0.1039 |
0.8825 | 832 | 0.0501 |
0.8836 | 833 | 0.066 |
0.8846 | 834 | 0.0775 |
0.8857 | 835 | 0.0605 |
0.8868 | 836 | 0.0651 |
0.8878 | 837 | 0.1079 |
0.8889 | 838 | 0.1664 |
0.8899 | 839 | 0.1982 |
0.8910 | 840 | 0.1549 |
0.8921 | 841 | 0.0944 |
0.8931 | 842 | 0.0645 |
0.8942 | 843 | 0.1407 |
0.8953 | 844 | 0.0975 |
0.8963 | 845 | 0.1142 |
0.8974 | 846 | 0.0814 |
0.8984 | 847 | 0.1161 |
0.8995 | 848 | 0.1087 |
0.9006 | 849 | 0.1345 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/bge-m3-kor-retrieval-bs16-checkpoint-849
Base model
BAAI/bge-m3