SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/e5-large-neg-v0-bs64-1000")
# Run inference
sentences = [
'아야미 ?카가 홍대 스테이라운지에서 개최하는 것은?',
'▲ 사진= BJ 야하군 제공 일본 유명 AV배우 아야미 ?카(あやみ旬果)가 한국 팬들을 만난다. 아야미 ?카는 오는 7일 오후 홍대 스테이라운지에서 팬미팅을 개최한다. 야마미 ?카는 독보적인 이미지로 일본 뿐만 아니라 한국에서도 많은 팬을 가지고 있다. 이날 팬미팅에는 근황토크 및 게임, 포토타임, 사인회, 선물 증정 시간 등이 예정돼 있어 팬들의 기대감을 고조시켰다. 한편 아야미 ?카의 팬미팅은 19세 이상의 성인을 대상으로 진행되며, 온라인을 통해 티켓을 구매할 수 있다.',
'일본 첫 단독공연을 앞둔 힙합그룹 MIB(엠아비)가 일본에서 뜨거운 인기를 실감하고 있다. 공연을 하루 앞둔 지난23일, MIB는 일본 도쿄 시부야에 있는 대형레코드 체인점 \'타워레코드\'에서 \'악수회\'를 성황리에 개최했다. \'악수회\' 수시간 전부터 MIB를 보기 위해 300여명의 팬들이 플래카드를 들고 타워레코드로 모여 현지관 계자를 놀라게 했다. 이에 앞서 MIB는 케이팝 전문방송인 \'K-POP LOVERS\'에 출연해 일본 진출 및 첫 단독 공연을 앞둔 소감을 전한 것은 물론, 강남의 칼럼에 소개된 에피소드에 대해 이야기하고 팬들의 궁금증을 풀어주는 시간도 가졌다. 정글엔터테인먼트 관계자는 "K-힙합을 MIB를 통해 일본 음악시장에 전파 할 수 있는 좋은 기회가 될 것이라고 생각한다"며 "향후 타워레코드 외에도 일본 메이저음반 기획사, 음반사와 접촉해 다양한 프로모션을 진행할 것"이라고 말했다. 현지 연예 관계자는 "MIB 멤버 강남이 재일교포라는 점이 현지 팬들에게 큰 관심을 불러일으키고 있는 것 같다. 특히 강남은 타워레코드 온라인 사이트에 격주 목요일마다 칼럼을 연재하고 있는데 이 또한 큰 인기를 모으고 있다"며 MIB의 일본 내 성공 가능성을 예측했다. 한편, MIB는 오늘(24일) 오후 3시 30분부터 하라주쿠에 위치한 아스트로홀에서 일본의 주요 음반 관계자들이 참석한 가운데 총2회에 걸쳐 일본 첫 단독 공연 \'We are M.I.B\'를 개최한다.& lt;연예부>',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 40per_device_eval_batch_size
: 40learning_rate
: 1e-05num_train_epochs
: 2warmup_steps
: 500bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 40per_device_eval_batch_size
: 40per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 500log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0003 | 1 | 2.7219 |
0.0007 | 2 | 2.7753 |
0.0010 | 3 | 2.7373 |
0.0013 | 4 | 2.7529 |
0.0017 | 5 | 2.6959 |
0.0020 | 6 | 2.768 |
0.0023 | 7 | 2.7428 |
0.0027 | 8 | 2.7725 |
0.0030 | 9 | 2.7389 |
0.0033 | 10 | 2.7752 |
0.0036 | 11 | 2.7 |
0.0040 | 12 | 2.7492 |
0.0043 | 13 | 2.7272 |
0.0046 | 14 | 2.7501 |
0.0050 | 15 | 2.759 |
0.0053 | 16 | 2.7457 |
0.0056 | 17 | 2.7419 |
0.0060 | 18 | 2.739 |
0.0063 | 19 | 2.7581 |
0.0066 | 20 | 2.7158 |
0.0070 | 21 | 2.725 |
0.0073 | 22 | 2.7363 |
0.0076 | 23 | 2.6828 |
0.0080 | 24 | 2.7619 |
0.0083 | 25 | 2.6938 |
0.0086 | 26 | 2.7455 |
0.0090 | 27 | 2.7248 |
0.0093 | 28 | 2.7678 |
0.0096 | 29 | 2.7563 |
0.0099 | 30 | 2.7033 |
0.0103 | 31 | 2.7035 |
0.0106 | 32 | 2.7345 |
0.0109 | 33 | 2.6754 |
0.0113 | 34 | 2.7921 |
0.0116 | 35 | 2.79 |
0.0119 | 36 | 2.6865 |
0.0123 | 37 | 2.7407 |
0.0126 | 38 | 2.7362 |
0.0129 | 39 | 2.6805 |
0.0133 | 40 | 2.7402 |
0.0136 | 41 | 2.6972 |
0.0139 | 42 | 2.7356 |
0.0143 | 43 | 2.712 |
0.0146 | 44 | 2.6828 |
0.0149 | 45 | 2.6852 |
0.0153 | 46 | 2.7227 |
0.0156 | 47 | 2.7209 |
0.0159 | 48 | 2.7307 |
0.0162 | 49 | 2.7703 |
0.0166 | 50 | 2.7254 |
0.0169 | 51 | 2.7373 |
0.0172 | 52 | 2.7207 |
0.0176 | 53 | 2.7273 |
0.0179 | 54 | 2.7449 |
0.0182 | 55 | 2.6575 |
0.0186 | 56 | 2.7346 |
0.0189 | 57 | 2.7311 |
0.0192 | 58 | 2.7281 |
0.0196 | 59 | 2.6742 |
0.0199 | 60 | 2.6287 |
0.0202 | 61 | 2.6896 |
0.0206 | 62 | 2.6906 |
0.0209 | 63 | 2.6318 |
0.0212 | 64 | 2.6971 |
0.0216 | 65 | 2.6691 |
0.0219 | 66 | 2.6948 |
0.0222 | 67 | 2.6952 |
0.0225 | 68 | 2.6762 |
0.0229 | 69 | 2.644 |
0.0232 | 70 | 2.6647 |
0.0235 | 71 | 2.6743 |
0.0239 | 72 | 2.7299 |
0.0242 | 73 | 2.714 |
0.0245 | 74 | 2.6815 |
0.0249 | 75 | 2.6845 |
0.0252 | 76 | 2.7221 |
0.0255 | 77 | 2.6515 |
0.0259 | 78 | 2.6575 |
0.0262 | 79 | 2.7143 |
0.0265 | 80 | 2.6328 |
0.0269 | 81 | 2.695 |
0.0272 | 82 | 2.6909 |
0.0275 | 83 | 2.7089 |
0.0279 | 84 | 2.6435 |
0.0282 | 85 | 2.6404 |
0.0285 | 86 | 2.6449 |
0.0288 | 87 | 2.6821 |
0.0292 | 88 | 2.5998 |
0.0295 | 89 | 2.6966 |
0.0298 | 90 | 2.6861 |
0.0302 | 91 | 2.6372 |
0.0305 | 92 | 2.6655 |
0.0308 | 93 | 2.6021 |
0.0312 | 94 | 2.6309 |
0.0315 | 95 | 2.6164 |
0.0318 | 96 | 2.7396 |
0.0322 | 97 | 2.7013 |
0.0325 | 98 | 2.662 |
0.0328 | 99 | 2.6793 |
0.0332 | 100 | 2.6042 |
0.0335 | 101 | 2.6704 |
0.0338 | 102 | 2.661 |
0.0342 | 103 | 2.6451 |
0.0345 | 104 | 2.6339 |
0.0348 | 105 | 2.6399 |
0.0351 | 106 | 2.5796 |
0.0355 | 107 | 2.5915 |
0.0358 | 108 | 2.5749 |
0.0361 | 109 | 2.6429 |
0.0365 | 110 | 2.5537 |
0.0368 | 111 | 2.6013 |
0.0371 | 112 | 2.5918 |
0.0375 | 113 | 2.5655 |
0.0378 | 114 | 2.563 |
0.0381 | 115 | 2.5716 |
0.0385 | 116 | 2.56 |
0.0388 | 117 | 2.4927 |
0.0391 | 118 | 2.4578 |
0.0395 | 119 | 2.5877 |
0.0398 | 120 | 2.5528 |
0.0401 | 121 | 2.5192 |
0.0405 | 122 | 2.5065 |
0.0408 | 123 | 2.5174 |
0.0411 | 124 | 2.5555 |
0.0414 | 125 | 2.468 |
0.0418 | 126 | 2.5195 |
0.0421 | 127 | 2.5036 |
0.0424 | 128 | 2.479 |
0.0428 | 129 | 2.5091 |
0.0431 | 130 | 2.4626 |
0.0434 | 131 | 2.5031 |
0.0438 | 132 | 2.4815 |
0.0441 | 133 | 2.502 |
0.0444 | 134 | 2.5055 |
0.0448 | 135 | 2.4191 |
0.0451 | 136 | 2.502 |
0.0454 | 137 | 2.4399 |
0.0458 | 138 | 2.4433 |
0.0461 | 139 | 2.4228 |
0.0464 | 140 | 2.3879 |
0.0468 | 141 | 2.4138 |
0.0471 | 142 | 2.4406 |
0.0474 | 143 | 2.4412 |
0.0477 | 144 | 2.3929 |
0.0481 | 145 | 2.4267 |
0.0484 | 146 | 2.448 |
0.0487 | 147 | 2.3706 |
0.0491 | 148 | 2.3915 |
0.0494 | 149 | 2.4324 |
0.0497 | 150 | 2.4307 |
0.0501 | 151 | 2.3764 |
0.0504 | 152 | 2.3366 |
0.0507 | 153 | 2.3657 |
0.0511 | 154 | 2.2976 |
0.0514 | 155 | 2.2982 |
0.0517 | 156 | 2.3343 |
0.0521 | 157 | 2.3154 |
0.0524 | 158 | 2.3333 |
0.0527 | 159 | 2.3634 |
0.0531 | 160 | 2.2703 |
0.0534 | 161 | 2.3085 |
0.0537 | 162 | 2.2974 |
0.0540 | 163 | 2.2984 |
0.0544 | 164 | 2.2948 |
0.0547 | 165 | 2.2454 |
0.0550 | 166 | 2.2938 |
0.0554 | 167 | 2.3112 |
0.0557 | 168 | 2.2443 |
0.0560 | 169 | 2.2266 |
0.0564 | 170 | 2.3432 |
0.0567 | 171 | 2.2663 |
0.0570 | 172 | 2.2468 |
0.0574 | 173 | 2.2611 |
0.0577 | 174 | 2.261 |
0.0580 | 175 | 2.2206 |
0.0584 | 176 | 2.154 |
0.0587 | 177 | 2.2501 |
0.0590 | 178 | 2.2063 |
0.0594 | 179 | 2.2257 |
0.0597 | 180 | 2.151 |
0.0600 | 181 | 2.1894 |
0.0603 | 182 | 2.1617 |
0.0607 | 183 | 2.107 |
0.0610 | 184 | 2.1248 |
0.0613 | 185 | 2.1756 |
0.0617 | 186 | 2.1391 |
0.0620 | 187 | 2.0931 |
0.0623 | 188 | 2.0362 |
0.0627 | 189 | 2.1396 |
0.0630 | 190 | 2.1278 |
0.0633 | 191 | 2.1121 |
0.0637 | 192 | 2.0986 |
0.0640 | 193 | 2.0724 |
0.0643 | 194 | 2.0569 |
0.0647 | 195 | 2.026 |
0.0650 | 196 | 2.0513 |
0.0653 | 197 | 2.0339 |
0.0656 | 198 | 2.0807 |
0.0660 | 199 | 2.028 |
0.0663 | 200 | 2.052 |
0.0666 | 201 | 2.0473 |
0.0670 | 202 | 1.9968 |
0.0673 | 203 | 1.9547 |
0.0676 | 204 | 1.9887 |
0.0680 | 205 | 1.8737 |
0.0683 | 206 | 1.8722 |
0.0686 | 207 | 1.8842 |
0.0690 | 208 | 1.9114 |
0.0693 | 209 | 1.8623 |
0.0696 | 210 | 1.744 |
0.0700 | 211 | 1.8192 |
0.0703 | 212 | 1.8231 |
0.0706 | 213 | 1.781 |
0.0710 | 214 | 1.8544 |
0.0713 | 215 | 1.8087 |
0.0716 | 216 | 1.7882 |
0.0719 | 217 | 1.7918 |
0.0723 | 218 | 1.7644 |
0.0726 | 219 | 1.7063 |
0.0729 | 220 | 1.7894 |
0.0733 | 221 | 1.6937 |
0.0736 | 222 | 1.6524 |
0.0739 | 223 | 1.6182 |
0.0743 | 224 | 1.6464 |
0.0746 | 225 | 1.6342 |
0.0749 | 226 | 1.6756 |
0.0753 | 227 | 1.6458 |
0.0756 | 228 | 1.6434 |
0.0759 | 229 | 1.58 |
0.0763 | 230 | 1.5874 |
0.0766 | 231 | 1.547 |
0.0769 | 232 | 1.5261 |
0.0773 | 233 | 1.568 |
0.0776 | 234 | 1.5031 |
0.0779 | 235 | 1.4509 |
0.0782 | 236 | 1.4294 |
0.0786 | 237 | 1.397 |
0.0789 | 238 | 1.4794 |
0.0792 | 239 | 1.3671 |
0.0796 | 240 | 1.3465 |
0.0799 | 241 | 1.3586 |
0.0802 | 242 | 1.3999 |
0.0806 | 243 | 1.3164 |
0.0809 | 244 | 1.2398 |
0.0812 | 245 | 1.2802 |
0.0816 | 246 | 1.3665 |
0.0819 | 247 | 1.239 |
0.0822 | 248 | 1.1971 |
0.0826 | 249 | 1.2108 |
0.0829 | 250 | 1.2047 |
0.0832 | 251 | 1.1824 |
0.0836 | 252 | 1.1744 |
0.0839 | 253 | 1.118 |
0.0842 | 254 | 1.1106 |
0.0845 | 255 | 1.1378 |
0.0849 | 256 | 1.013 |
0.0852 | 257 | 1.053 |
0.0855 | 258 | 1.121 |
0.0859 | 259 | 1.0225 |
0.0862 | 260 | 0.9968 |
0.0865 | 261 | 0.9309 |
0.0869 | 262 | 0.9649 |
0.0872 | 263 | 0.9778 |
0.0875 | 264 | 0.9871 |
0.0879 | 265 | 0.9451 |
0.0882 | 266 | 0.8348 |
0.0885 | 267 | 0.8388 |
0.0889 | 268 | 0.7932 |
0.0892 | 269 | 0.7745 |
0.0895 | 270 | 0.806 |
0.0899 | 271 | 0.7713 |
0.0902 | 272 | 0.8147 |
0.0905 | 273 | 0.7881 |
0.0908 | 274 | 0.6988 |
0.0912 | 275 | 0.7321 |
0.0915 | 276 | 0.658 |
0.0918 | 277 | 0.6616 |
0.0922 | 278 | 0.7005 |
0.0925 | 279 | 0.6202 |
0.0928 | 280 | 0.6297 |
0.0932 | 281 | 0.6376 |
0.0935 | 282 | 0.5503 |
0.0938 | 283 | 0.5584 |
0.0942 | 284 | 0.553 |
0.0945 | 285 | 0.5496 |
0.0948 | 286 | 0.523 |
0.0952 | 287 | 0.5122 |
0.0955 | 288 | 0.5487 |
0.0958 | 289 | 0.5099 |
0.0962 | 290 | 0.5036 |
0.0965 | 291 | 0.5226 |
0.0968 | 292 | 0.5166 |
0.0971 | 293 | 0.5152 |
0.0975 | 294 | 0.5026 |
0.0978 | 295 | 0.4217 |
0.0981 | 296 | 0.4519 |
0.0985 | 297 | 0.4942 |
0.0988 | 298 | 0.4916 |
0.0991 | 299 | 0.4697 |
0.0995 | 300 | 0.5236 |
0.0998 | 301 | 0.4096 |
0.1001 | 302 | 0.4599 |
0.1005 | 303 | 0.4538 |
0.1008 | 304 | 0.4469 |
0.1011 | 305 | 0.3647 |
0.1015 | 306 | 0.4438 |
0.1018 | 307 | 0.3887 |
0.1021 | 308 | 0.4455 |
0.1025 | 309 | 0.4266 |
0.1028 | 310 | 0.4024 |
0.1031 | 311 | 0.4443 |
0.1034 | 312 | 0.3603 |
0.1038 | 313 | 0.3466 |
0.1041 | 314 | 0.3599 |
0.1044 | 315 | 0.359 |
0.1048 | 316 | 0.3696 |
0.1051 | 317 | 0.3051 |
0.1054 | 318 | 0.3049 |
0.1058 | 319 | 0.3917 |
0.1061 | 320 | 0.3548 |
0.1064 | 321 | 0.3247 |
0.1068 | 322 | 0.3339 |
0.1071 | 323 | 0.3412 |
0.1074 | 324 | 0.3404 |
0.1078 | 325 | 0.3312 |
0.1081 | 326 | 0.3421 |
0.1084 | 327 | 0.3128 |
0.1088 | 328 | 0.3071 |
0.1091 | 329 | 0.3324 |
0.1094 | 330 | 0.3144 |
0.1097 | 331 | 0.3926 |
0.1101 | 332 | 0.329 |
0.1104 | 333 | 0.3127 |
0.1107 | 334 | 0.2943 |
0.1111 | 335 | 0.3113 |
0.1114 | 336 | 0.3196 |
0.1117 | 337 | 0.3124 |
0.1121 | 338 | 0.359 |
0.1124 | 339 | 0.3002 |
0.1127 | 340 | 0.3034 |
0.1131 | 341 | 0.3183 |
0.1134 | 342 | 0.293 |
0.1137 | 343 | 0.3177 |
0.1141 | 344 | 0.3065 |
0.1144 | 345 | 0.3224 |
0.1147 | 346 | 0.242 |
0.1151 | 347 | 0.3478 |
0.1154 | 348 | 0.2316 |
0.1157 | 349 | 0.3266 |
0.1160 | 350 | 0.3164 |
0.1164 | 351 | 0.3205 |
0.1167 | 352 | 0.305 |
0.1170 | 353 | 0.3371 |
0.1174 | 354 | 0.3613 |
0.1177 | 355 | 0.3245 |
0.1180 | 356 | 0.2858 |
0.1184 | 357 | 0.3188 |
0.1187 | 358 | 0.281 |
0.1190 | 359 | 0.2857 |
0.1194 | 360 | 0.293 |
0.1197 | 361 | 0.2687 |
0.1200 | 362 | 0.2914 |
0.1204 | 363 | 0.3362 |
0.1207 | 364 | 0.2652 |
0.1210 | 365 | 0.2964 |
0.1214 | 366 | 0.2987 |
0.1217 | 367 | 0.3005 |
0.1220 | 368 | 0.2879 |
0.1223 | 369 | 0.2194 |
0.1227 | 370 | 0.2624 |
0.1230 | 371 | 0.3211 |
0.1233 | 372 | 0.2729 |
0.1237 | 373 | 0.3242 |
0.1240 | 374 | 0.2367 |
0.1243 | 375 | 0.2894 |
0.1247 | 376 | 0.2264 |
0.125 | 377 | 0.2065 |
0.1253 | 378 | 0.3032 |
0.1257 | 379 | 0.2204 |
0.1260 | 380 | 0.2386 |
0.1263 | 381 | 0.3083 |
0.1267 | 382 | 0.2363 |
0.1270 | 383 | 0.3204 |
0.1273 | 384 | 0.2661 |
0.1277 | 385 | 0.2817 |
0.1280 | 386 | 0.2944 |
0.1283 | 387 | 0.2524 |
0.1286 | 388 | 0.2543 |
0.1290 | 389 | 0.2629 |
0.1293 | 390 | 0.2952 |
0.1296 | 391 | 0.2251 |
0.1300 | 392 | 0.2912 |
0.1303 | 393 | 0.2922 |
0.1306 | 394 | 0.2564 |
0.1310 | 395 | 0.2916 |
0.1313 | 396 | 0.2392 |
0.1316 | 397 | 0.2545 |
0.1320 | 398 | 0.2597 |
0.1323 | 399 | 0.2941 |
0.1326 | 400 | 0.2025 |
0.1330 | 401 | 0.2615 |
0.1333 | 402 | 0.201 |
0.1336 | 403 | 0.2331 |
0.1340 | 404 | 0.2289 |
0.1343 | 405 | 0.2429 |
0.1346 | 406 | 0.2555 |
0.1349 | 407 | 0.2442 |
0.1353 | 408 | 0.2491 |
0.1356 | 409 | 0.2676 |
0.1359 | 410 | 0.2394 |
0.1363 | 411 | 0.1998 |
0.1366 | 412 | 0.3141 |
0.1369 | 413 | 0.239 |
0.1373 | 414 | 0.2281 |
0.1376 | 415 | 0.2278 |
0.1379 | 416 | 0.1913 |
0.1383 | 417 | 0.2615 |
0.1386 | 418 | 0.2708 |
0.1389 | 419 | 0.2287 |
0.1393 | 420 | 0.2409 |
0.1396 | 421 | 0.271 |
0.1399 | 422 | 0.2295 |
0.1403 | 423 | 0.2403 |
0.1406 | 424 | 0.2443 |
0.1409 | 425 | 0.2621 |
0.1412 | 426 | 0.2835 |
0.1416 | 427 | 0.1829 |
0.1419 | 428 | 0.2298 |
0.1422 | 429 | 0.2479 |
0.1426 | 430 | 0.2467 |
0.1429 | 431 | 0.2288 |
0.1432 | 432 | 0.1992 |
0.1436 | 433 | 0.2195 |
0.1439 | 434 | 0.2502 |
0.1442 | 435 | 0.2043 |
0.1446 | 436 | 0.2548 |
0.1449 | 437 | 0.2429 |
0.1452 | 438 | 0.2039 |
0.1456 | 439 | 0.2663 |
0.1459 | 440 | 0.1836 |
0.1462 | 441 | 0.2144 |
0.1466 | 442 | 0.223 |
0.1469 | 443 | 0.2568 |
0.1472 | 444 | 0.2207 |
0.1475 | 445 | 0.1863 |
0.1479 | 446 | 0.21 |
0.1482 | 447 | 0.2514 |
0.1485 | 448 | 0.208 |
0.1489 | 449 | 0.2201 |
0.1492 | 450 | 0.2132 |
0.1495 | 451 | 0.231 |
0.1499 | 452 | 0.2629 |
0.1502 | 453 | 0.2138 |
0.1505 | 454 | 0.2611 |
0.1509 | 455 | 0.1523 |
0.1512 | 456 | 0.2335 |
0.1515 | 457 | 0.217 |
0.1519 | 458 | 0.2436 |
0.1522 | 459 | 0.2308 |
0.1525 | 460 | 0.1993 |
0.1529 | 461 | 0.2147 |
0.1532 | 462 | 0.2242 |
0.1535 | 463 | 0.1954 |
0.1538 | 464 | 0.1941 |
0.1542 | 465 | 0.2294 |
0.1545 | 466 | 0.1766 |
0.1548 | 467 | 0.1718 |
0.1552 | 468 | 0.2119 |
0.1555 | 469 | 0.2239 |
0.1558 | 470 | 0.2218 |
0.1562 | 471 | 0.2122 |
0.1565 | 472 | 0.1968 |
0.1568 | 473 | 0.197 |
0.1572 | 474 | 0.2105 |
0.1575 | 475 | 0.2177 |
0.1578 | 476 | 0.2139 |
0.1582 | 477 | 0.1804 |
0.1585 | 478 | 0.1768 |
0.1588 | 479 | 0.2257 |
0.1592 | 480 | 0.1626 |
0.1595 | 481 | 0.2167 |
0.1598 | 482 | 0.2452 |
0.1601 | 483 | 0.2573 |
0.1605 | 484 | 0.1989 |
0.1608 | 485 | 0.1899 |
0.1611 | 486 | 0.1869 |
0.1615 | 487 | 0.2136 |
0.1618 | 488 | 0.2129 |
0.1621 | 489 | 0.1992 |
0.1625 | 490 | 0.1839 |
0.1628 | 491 | 0.2387 |
0.1631 | 492 | 0.1933 |
0.1635 | 493 | 0.1896 |
0.1638 | 494 | 0.1924 |
0.1641 | 495 | 0.173 |
0.1645 | 496 | 0.2143 |
0.1648 | 497 | 0.1613 |
0.1651 | 498 | 0.1697 |
0.1655 | 499 | 0.1865 |
0.1658 | 500 | 0.181 |
0.1661 | 501 | 0.185 |
0.1664 | 502 | 0.2185 |
0.1668 | 503 | 0.2051 |
0.1671 | 504 | 0.2386 |
0.1674 | 505 | 0.178 |
0.1678 | 506 | 0.1406 |
0.1681 | 507 | 0.1754 |
0.1684 | 508 | 0.2599 |
0.1688 | 509 | 0.1763 |
0.1691 | 510 | 0.2447 |
0.1694 | 511 | 0.1903 |
0.1698 | 512 | 0.2243 |
0.1701 | 513 | 0.2005 |
0.1704 | 514 | 0.1887 |
0.1708 | 515 | 0.1978 |
0.1711 | 516 | 0.158 |
0.1714 | 517 | 0.1447 |
0.1718 | 518 | 0.2146 |
0.1721 | 519 | 0.2158 |
0.1724 | 520 | 0.1933 |
0.1727 | 521 | 0.1903 |
0.1731 | 522 | 0.1756 |
0.1734 | 523 | 0.2533 |
0.1737 | 524 | 0.2224 |
0.1741 | 525 | 0.2162 |
0.1744 | 526 | 0.1626 |
0.1747 | 527 | 0.1856 |
0.1751 | 528 | 0.1804 |
0.1754 | 529 | 0.2279 |
0.1757 | 530 | 0.2004 |
0.1761 | 531 | 0.1869 |
0.1764 | 532 | 0.2304 |
0.1767 | 533 | 0.2249 |
0.1771 | 534 | 0.1893 |
0.1774 | 535 | 0.1876 |
0.1777 | 536 | 0.1665 |
0.1781 | 537 | 0.2254 |
0.1784 | 538 | 0.1412 |
0.1787 | 539 | 0.1812 |
0.1790 | 540 | 0.1637 |
0.1794 | 541 | 0.1593 |
0.1797 | 542 | 0.172 |
0.1800 | 543 | 0.1991 |
0.1804 | 544 | 0.1942 |
0.1807 | 545 | 0.1753 |
0.1810 | 546 | 0.22 |
0.1814 | 547 | 0.1725 |
0.1817 | 548 | 0.1677 |
0.1820 | 549 | 0.1791 |
0.1824 | 550 | 0.2238 |
0.1827 | 551 | 0.1727 |
0.1830 | 552 | 0.1965 |
0.1834 | 553 | 0.2004 |
0.1837 | 554 | 0.1444 |
0.1840 | 555 | 0.1413 |
0.1844 | 556 | 0.2054 |
0.1847 | 557 | 0.2145 |
0.1850 | 558 | 0.1498 |
0.1853 | 559 | 0.1764 |
0.1857 | 560 | 0.1732 |
0.1860 | 561 | 0.168 |
0.1863 | 562 | 0.1705 |
0.1867 | 563 | 0.1747 |
0.1870 | 564 | 0.1747 |
0.1873 | 565 | 0.1795 |
0.1877 | 566 | 0.1578 |
0.1880 | 567 | 0.2291 |
0.1883 | 568 | 0.2056 |
0.1887 | 569 | 0.1909 |
0.1890 | 570 | 0.1859 |
0.1893 | 571 | 0.198 |
0.1897 | 572 | 0.1701 |
0.1900 | 573 | 0.1664 |
0.1903 | 574 | 0.199 |
0.1906 | 575 | 0.1763 |
0.1910 | 576 | 0.2009 |
0.1913 | 577 | 0.1704 |
0.1916 | 578 | 0.1478 |
0.1920 | 579 | 0.1798 |
0.1923 | 580 | 0.1679 |
0.1926 | 581 | 0.1793 |
0.1930 | 582 | 0.1596 |
0.1933 | 583 | 0.2125 |
0.1936 | 584 | 0.2065 |
0.1940 | 585 | 0.169 |
0.1943 | 586 | 0.1603 |
0.1946 | 587 | 0.1304 |
0.1950 | 588 | 0.1606 |
0.1953 | 589 | 0.2294 |
0.1956 | 590 | 0.1792 |
0.1960 | 591 | 0.1948 |
0.1963 | 592 | 0.2194 |
0.1966 | 593 | 0.1499 |
0.1969 | 594 | 0.1691 |
0.1973 | 595 | 0.2422 |
0.1976 | 596 | 0.1424 |
0.1979 | 597 | 0.1717 |
0.1983 | 598 | 0.1888 |
0.1986 | 599 | 0.1846 |
0.1989 | 600 | 0.2029 |
0.1993 | 601 | 0.2088 |
0.1996 | 602 | 0.2413 |
0.1999 | 603 | 0.1716 |
0.2003 | 604 | 0.1597 |
0.2006 | 605 | 0.1568 |
0.2009 | 606 | 0.214 |
0.2013 | 607 | 0.1433 |
0.2016 | 608 | 0.1803 |
0.2019 | 609 | 0.1769 |
0.2023 | 610 | 0.1897 |
0.2026 | 611 | 0.176 |
0.2029 | 612 | 0.1623 |
0.2032 | 613 | 0.1936 |
0.2036 | 614 | 0.1762 |
0.2039 | 615 | 0.1748 |
0.2042 | 616 | 0.1836 |
0.2046 | 617 | 0.1536 |
0.2049 | 618 | 0.1914 |
0.2052 | 619 | 0.1749 |
0.2056 | 620 | 0.1718 |
0.2059 | 621 | 0.219 |
0.2062 | 622 | 0.1876 |
0.2066 | 623 | 0.1186 |
0.2069 | 624 | 0.1779 |
0.2072 | 625 | 0.1417 |
0.2076 | 626 | 0.1532 |
0.2079 | 627 | 0.1836 |
0.2082 | 628 | 0.2494 |
0.2086 | 629 | 0.1731 |
0.2089 | 630 | 0.1559 |
0.2092 | 631 | 0.1841 |
0.2095 | 632 | 0.158 |
0.2099 | 633 | 0.1894 |
0.2102 | 634 | 0.1955 |
0.2105 | 635 | 0.1873 |
0.2109 | 636 | 0.1761 |
0.2112 | 637 | 0.1713 |
0.2115 | 638 | 0.1897 |
0.2119 | 639 | 0.1616 |
0.2122 | 640 | 0.1556 |
0.2125 | 641 | 0.164 |
0.2129 | 642 | 0.1837 |
0.2132 | 643 | 0.1751 |
0.2135 | 644 | 0.1932 |
0.2139 | 645 | 0.1523 |
0.2142 | 646 | 0.1549 |
0.2145 | 647 | 0.1617 |
0.2149 | 648 | 0.158 |
0.2152 | 649 | 0.1768 |
0.2155 | 650 | 0.1619 |
0.2158 | 651 | 0.192 |
0.2162 | 652 | 0.143 |
0.2165 | 653 | 0.1527 |
0.2168 | 654 | 0.1811 |
0.2172 | 655 | 0.1929 |
0.2175 | 656 | 0.1545 |
0.2178 | 657 | 0.1367 |
0.2182 | 658 | 0.2054 |
0.2185 | 659 | 0.1602 |
0.2188 | 660 | 0.1782 |
0.2192 | 661 | 0.1539 |
0.2195 | 662 | 0.1908 |
0.2198 | 663 | 0.1696 |
0.2202 | 664 | 0.1709 |
0.2205 | 665 | 0.1643 |
0.2208 | 666 | 0.1445 |
0.2212 | 667 | 0.151 |
0.2215 | 668 | 0.1594 |
0.2218 | 669 | 0.2188 |
0.2221 | 670 | 0.1509 |
0.2225 | 671 | 0.1685 |
0.2228 | 672 | 0.1941 |
0.2231 | 673 | 0.1617 |
0.2235 | 674 | 0.2097 |
0.2238 | 675 | 0.1779 |
0.2241 | 676 | 0.1333 |
0.2245 | 677 | 0.1446 |
0.2248 | 678 | 0.1429 |
0.2251 | 679 | 0.1988 |
0.2255 | 680 | 0.1825 |
0.2258 | 681 | 0.1469 |
0.2261 | 682 | 0.201 |
0.2265 | 683 | 0.1884 |
0.2268 | 684 | 0.1717 |
0.2271 | 685 | 0.2082 |
0.2275 | 686 | 0.1408 |
0.2278 | 687 | 0.1423 |
0.2281 | 688 | 0.1839 |
0.2284 | 689 | 0.1547 |
0.2288 | 690 | 0.1988 |
0.2291 | 691 | 0.151 |
0.2294 | 692 | 0.1673 |
0.2298 | 693 | 0.1424 |
0.2301 | 694 | 0.2006 |
0.2304 | 695 | 0.1884 |
0.2308 | 696 | 0.1432 |
0.2311 | 697 | 0.1619 |
0.2314 | 698 | 0.1649 |
0.2318 | 699 | 0.1561 |
0.2321 | 700 | 0.1787 |
0.2324 | 701 | 0.1837 |
0.2328 | 702 | 0.169 |
0.2331 | 703 | 0.1476 |
0.2334 | 704 | 0.1501 |
0.2338 | 705 | 0.1672 |
0.2341 | 706 | 0.1397 |
0.2344 | 707 | 0.1329 |
0.2347 | 708 | 0.1302 |
0.2351 | 709 | 0.1572 |
0.2354 | 710 | 0.1719 |
0.2357 | 711 | 0.1482 |
0.2361 | 712 | 0.1802 |
0.2364 | 713 | 0.1408 |
0.2367 | 714 | 0.1235 |
0.2371 | 715 | 0.1775 |
0.2374 | 716 | 0.1341 |
0.2377 | 717 | 0.1922 |
0.2381 | 718 | 0.1328 |
0.2384 | 719 | 0.1766 |
0.2387 | 720 | 0.1697 |
0.2391 | 721 | 0.1364 |
0.2394 | 722 | 0.1549 |
0.2397 | 723 | 0.1847 |
0.2401 | 724 | 0.132 |
0.2404 | 725 | 0.1391 |
0.2407 | 726 | 0.1868 |
0.2410 | 727 | 0.172 |
0.2414 | 728 | 0.1881 |
0.2417 | 729 | 0.1753 |
0.2420 | 730 | 0.2076 |
0.2424 | 731 | 0.1391 |
0.2427 | 732 | 0.1696 |
0.2430 | 733 | 0.1701 |
0.2434 | 734 | 0.1531 |
0.2437 | 735 | 0.16 |
0.2440 | 736 | 0.1733 |
0.2444 | 737 | 0.1603 |
0.2447 | 738 | 0.1532 |
0.2450 | 739 | 0.156 |
0.2454 | 740 | 0.1547 |
0.2457 | 741 | 0.1572 |
0.2460 | 742 | 0.1279 |
0.2464 | 743 | 0.1353 |
0.2467 | 744 | 0.2082 |
0.2470 | 745 | 0.2309 |
0.2473 | 746 | 0.2141 |
0.2477 | 747 | 0.1741 |
0.2480 | 748 | 0.149 |
0.2483 | 749 | 0.179 |
0.2487 | 750 | 0.1679 |
0.2490 | 751 | 0.1625 |
0.2493 | 752 | 0.1449 |
0.2497 | 753 | 0.1579 |
0.25 | 754 | 0.1826 |
0.2503 | 755 | 0.1537 |
0.2507 | 756 | 0.153 |
0.2510 | 757 | 0.1645 |
0.2513 | 758 | 0.1513 |
0.2517 | 759 | 0.1617 |
0.2520 | 760 | 0.1419 |
0.2523 | 761 | 0.1539 |
0.2527 | 762 | 0.1364 |
0.2530 | 763 | 0.1725 |
0.2533 | 764 | 0.1525 |
0.2536 | 765 | 0.1384 |
0.2540 | 766 | 0.1465 |
0.2543 | 767 | 0.1794 |
0.2546 | 768 | 0.1587 |
0.2550 | 769 | 0.1674 |
0.2553 | 770 | 0.1557 |
0.2556 | 771 | 0.1752 |
0.2560 | 772 | 0.156 |
0.2563 | 773 | 0.1867 |
0.2566 | 774 | 0.181 |
0.2570 | 775 | 0.1386 |
0.2573 | 776 | 0.1204 |
0.2576 | 777 | 0.1888 |
0.2580 | 778 | 0.1812 |
0.2583 | 779 | 0.1809 |
0.2586 | 780 | 0.1604 |
0.2590 | 781 | 0.1423 |
0.2593 | 782 | 0.1562 |
0.2596 | 783 | 0.1381 |
0.2599 | 784 | 0.2003 |
0.2603 | 785 | 0.1189 |
0.2606 | 786 | 0.1423 |
0.2609 | 787 | 0.1547 |
0.2613 | 788 | 0.1473 |
0.2616 | 789 | 0.1447 |
0.2619 | 790 | 0.1697 |
0.2623 | 791 | 0.1574 |
0.2626 | 792 | 0.153 |
0.2629 | 793 | 0.1631 |
0.2633 | 794 | 0.1712 |
0.2636 | 795 | 0.1594 |
0.2639 | 796 | 0.1469 |
0.2643 | 797 | 0.1526 |
0.2646 | 798 | 0.1849 |
0.2649 | 799 | 0.1405 |
0.2653 | 800 | 0.1758 |
0.2656 | 801 | 0.1681 |
0.2659 | 802 | 0.1656 |
0.2662 | 803 | 0.1765 |
0.2666 | 804 | 0.1304 |
0.2669 | 805 | 0.1478 |
0.2672 | 806 | 0.1543 |
0.2676 | 807 | 0.1571 |
0.2679 | 808 | 0.1706 |
0.2682 | 809 | 0.1566 |
0.2686 | 810 | 0.116 |
0.2689 | 811 | 0.1696 |
0.2692 | 812 | 0.149 |
0.2696 | 813 | 0.1491 |
0.2699 | 814 | 0.1538 |
0.2702 | 815 | 0.1548 |
0.2706 | 816 | 0.1794 |
0.2709 | 817 | 0.1287 |
0.2712 | 818 | 0.1373 |
0.2716 | 819 | 0.2021 |
0.2719 | 820 | 0.1706 |
0.2722 | 821 | 0.1636 |
0.2725 | 822 | 0.2122 |
0.2729 | 823 | 0.1666 |
0.2732 | 824 | 0.1332 |
0.2735 | 825 | 0.1849 |
0.2739 | 826 | 0.132 |
0.2742 | 827 | 0.1452 |
0.2745 | 828 | 0.1791 |
0.2749 | 829 | 0.1541 |
0.2752 | 830 | 0.177 |
0.2755 | 831 | 0.179 |
0.2759 | 832 | 0.156 |
0.2762 | 833 | 0.1545 |
0.2765 | 834 | 0.1587 |
0.2769 | 835 | 0.1328 |
0.2772 | 836 | 0.1615 |
0.2775 | 837 | 0.1693 |
0.2779 | 838 | 0.1261 |
0.2782 | 839 | 0.1713 |
0.2785 | 840 | 0.1391 |
0.2788 | 841 | 0.1801 |
0.2792 | 842 | 0.1646 |
0.2795 | 843 | 0.1291 |
0.2798 | 844 | 0.1169 |
0.2802 | 845 | 0.1551 |
0.2805 | 846 | 0.1242 |
0.2808 | 847 | 0.129 |
0.2812 | 848 | 0.1641 |
0.2815 | 849 | 0.1702 |
0.2818 | 850 | 0.1101 |
0.2822 | 851 | 0.1596 |
0.2825 | 852 | 0.1192 |
0.2828 | 853 | 0.1414 |
0.2832 | 854 | 0.1567 |
0.2835 | 855 | 0.1526 |
0.2838 | 856 | 0.136 |
0.2842 | 857 | 0.1018 |
0.2845 | 858 | 0.161 |
0.2848 | 859 | 0.165 |
0.2851 | 860 | 0.1398 |
0.2855 | 861 | 0.1933 |
0.2858 | 862 | 0.1346 |
0.2861 | 863 | 0.1276 |
0.2865 | 864 | 0.1663 |
0.2868 | 865 | 0.2063 |
0.2871 | 866 | 0.1642 |
0.2875 | 867 | 0.1454 |
0.2878 | 868 | 0.1569 |
0.2881 | 869 | 0.1425 |
0.2885 | 870 | 0.1696 |
0.2888 | 871 | 0.1543 |
0.2891 | 872 | 0.1418 |
0.2895 | 873 | 0.1574 |
0.2898 | 874 | 0.1392 |
0.2901 | 875 | 0.1299 |
0.2905 | 876 | 0.1381 |
0.2908 | 877 | 0.1428 |
0.2911 | 878 | 0.1392 |
0.2914 | 879 | 0.115 |
0.2918 | 880 | 0.1614 |
0.2921 | 881 | 0.1249 |
0.2924 | 882 | 0.1928 |
0.2928 | 883 | 0.1119 |
0.2931 | 884 | 0.1694 |
0.2934 | 885 | 0.1482 |
0.2938 | 886 | 0.1661 |
0.2941 | 887 | 0.1426 |
0.2944 | 888 | 0.1548 |
0.2948 | 889 | 0.1462 |
0.2951 | 890 | 0.1448 |
0.2954 | 891 | 0.1315 |
0.2958 | 892 | 0.1428 |
0.2961 | 893 | 0.1514 |
0.2964 | 894 | 0.1736 |
0.2968 | 895 | 0.1712 |
0.2971 | 896 | 0.1563 |
0.2974 | 897 | 0.1528 |
0.2977 | 898 | 0.1762 |
0.2981 | 899 | 0.1885 |
0.2984 | 900 | 0.1445 |
0.2987 | 901 | 0.1461 |
0.2991 | 902 | 0.1145 |
0.2994 | 903 | 0.1246 |
0.2997 | 904 | 0.1697 |
0.3001 | 905 | 0.1172 |
0.3004 | 906 | 0.1248 |
0.3007 | 907 | 0.147 |
0.3011 | 908 | 0.1716 |
0.3014 | 909 | 0.1329 |
0.3017 | 910 | 0.1205 |
0.3021 | 911 | 0.1556 |
0.3024 | 912 | 0.1482 |
0.3027 | 913 | 0.1823 |
0.3031 | 914 | 0.1471 |
0.3034 | 915 | 0.1568 |
0.3037 | 916 | 0.1262 |
0.3040 | 917 | 0.14 |
0.3044 | 918 | 0.152 |
0.3047 | 919 | 0.1625 |
0.3050 | 920 | 0.1708 |
0.3054 | 921 | 0.161 |
0.3057 | 922 | 0.1477 |
0.3060 | 923 | 0.149 |
0.3064 | 924 | 0.1566 |
0.3067 | 925 | 0.1683 |
0.3070 | 926 | 0.137 |
0.3074 | 927 | 0.1511 |
0.3077 | 928 | 0.111 |
0.3080 | 929 | 0.142 |
0.3084 | 930 | 0.1904 |
0.3087 | 931 | 0.1741 |
0.3090 | 932 | 0.1539 |
0.3094 | 933 | 0.1964 |
0.3097 | 934 | 0.1415 |
0.3100 | 935 | 0.1387 |
0.3103 | 936 | 0.1632 |
0.3107 | 937 | 0.1499 |
0.3110 | 938 | 0.1167 |
0.3113 | 939 | 0.1725 |
0.3117 | 940 | 0.1569 |
0.3120 | 941 | 0.1451 |
0.3123 | 942 | 0.1665 |
0.3127 | 943 | 0.1156 |
0.3130 | 944 | 0.1508 |
0.3133 | 945 | 0.123 |
0.3137 | 946 | 0.1809 |
0.3140 | 947 | 0.1476 |
0.3143 | 948 | 0.1467 |
0.3147 | 949 | 0.1577 |
0.3150 | 950 | 0.1417 |
0.3153 | 951 | 0.1403 |
0.3156 | 952 | 0.136 |
0.3160 | 953 | 0.1365 |
0.3163 | 954 | 0.1559 |
0.3166 | 955 | 0.1338 |
0.3170 | 956 | 0.1435 |
0.3173 | 957 | 0.1928 |
0.3176 | 958 | 0.1599 |
0.3180 | 959 | 0.174 |
0.3183 | 960 | 0.1719 |
0.3186 | 961 | 0.1199 |
0.3190 | 962 | 0.1452 |
0.3193 | 963 | 0.1533 |
0.3196 | 964 | 0.1377 |
0.3200 | 965 | 0.1852 |
0.3203 | 966 | 0.1308 |
0.3206 | 967 | 0.1668 |
0.3210 | 968 | 0.174 |
0.3213 | 969 | 0.1361 |
0.3216 | 970 | 0.1461 |
0.3219 | 971 | 0.1458 |
0.3223 | 972 | 0.1788 |
0.3226 | 973 | 0.128 |
0.3229 | 974 | 0.1806 |
0.3233 | 975 | 0.1837 |
0.3236 | 976 | 0.1684 |
0.3239 | 977 | 0.1799 |
0.3243 | 978 | 0.1479 |
0.3246 | 979 | 0.1372 |
0.3249 | 980 | 0.1709 |
0.3253 | 981 | 0.1601 |
0.3256 | 982 | 0.1602 |
0.3259 | 983 | 0.1548 |
0.3263 | 984 | 0.1408 |
0.3266 | 985 | 0.0981 |
0.3269 | 986 | 0.0929 |
0.3273 | 987 | 0.1504 |
0.3276 | 988 | 0.1761 |
0.3279 | 989 | 0.1513 |
0.3282 | 990 | 0.1653 |
0.3286 | 991 | 0.1478 |
0.3289 | 992 | 0.1215 |
0.3292 | 993 | 0.1559 |
0.3296 | 994 | 0.1565 |
0.3299 | 995 | 0.1181 |
0.3302 | 996 | 0.1557 |
0.3306 | 997 | 0.1656 |
0.3309 | 998 | 0.1402 |
0.3312 | 999 | 0.171 |
0.3316 | 1000 | 0.1279 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/e5-large-neg-v0-bs64-1000
Base model
intfloat/multilingual-e5-large