sepulm01's picture
End of training
7b8df65 verified
|
raw
history blame
7.74 kB
metadata
language:
  - es
license: cc-by-sa-4.0
library_name: span-marker
tags:
  - span-marker
  - token-classification
  - ner
  - named-entity-recognition
  - generated_from_span_marker_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
widget:
  - text: >-
      Por otro lado, el primer ministro portugués, Antonio Guterres, presidente
      de turno del Consejo Europeo, recibió hoy al ministro del Interior de
      Colombia, Hugo de la Calle, enviado especial del presidente de su país,
      Andrés Pastrana.
  - text: >-
      Los consejeros de la Presidencia, Gaspar Zarrías, de Justicia, Carmen
      Hermosín, y de Asuntos Sociales, Isaías Pérez Saldaña, darán comienzo
      mañana a los turnos de comparecencias de los miembros del Gobierno andaluz
      en el Parlamento autonómico para informar de las líneas de actuación de
      sus departamentos.
  - text: >-
      (SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA
      Córdoba (EFE).
  - text: >-
      Cuando vino a Soria, en febrero de 1998, para sustituir al entonces
      destituido Antonio Gómez, estaba dirigiendo al Badajoz B en tercera
      división y consiguió con el Numancia la permanencia en la última jornada
      frente al Hércules.
  - text: >-
      El ministro ecuatoriano de Defensa, Hugo Unda, aseguró hoy que las Fuerzas
      Armadas respetarán la decisión del Parlamento sobre la amnistía para los
      involucrados en la asonada golpista del pasado 21 de enero, cuando fue
      derrocado el presidente Jamil Mahuad.
pipeline_tag: token-classification
base_model: bert-base-cased
model-index:
  - name: SpanMarker with bert-base-cased on conll2002
    results:
      - task:
          type: token-classification
          name: Named Entity Recognition
        dataset:
          name: Unknown
          type: conll2002
          split: test
        metrics:
          - type: f1
            value: 0.8200812536273941
            name: F1
          - type: precision
            value: 0.8331367924528302
            name: Precision
          - type: recall
            value: 0.8074285714285714
            name: Recall

SpanMarker with bert-base-cased on conll2002

This is a SpanMarker model trained on the conll2002 dataset that can be used for Named Entity Recognition. This SpanMarker model uses bert-base-cased as the underlying encoder.

Model Details

Model Description

  • Model Type: SpanMarker
  • Encoder: bert-base-cased
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 8 words
  • Training Dataset: conll2002
  • Language: es
  • License: cc-by-sa-4.0

Model Sources

Model Labels

Label Examples
LOC "Victoria", "Australia", "Melbourne"
MISC "Ley", "Ciudad", "CrimeNet"
ORG "Tribunal Supremo", "EFE", "Commonwealth"
PER "Abogado General del Estado", "Daryl Williams", "Abogado General"

Evaluation

Metrics

Label Precision Recall F1
all 0.8331 0.8074 0.8201
LOC 0.8471 0.7759 0.8099
MISC 0.7092 0.4264 0.5326
ORG 0.7854 0.8558 0.8191
PER 0.9471 0.9329 0.9400

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("(SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA Córdoba (EFE).")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 0 31.8014 1238
Entities per sentence 0 2.2583 160

Training Hyperparameters

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
0.1164 200 0.0260 0.6907 0.5358 0.6035 0.9264
0.2328 400 0.0199 0.7567 0.6384 0.6925 0.9414
0.3491 600 0.0176 0.7773 0.7273 0.7515 0.9563
0.4655 800 0.0157 0.8066 0.7598 0.7825 0.9601
0.5819 1000 0.0158 0.8031 0.7413 0.7710 0.9605
0.6983 1200 0.0156 0.7975 0.7598 0.7782 0.9609
0.8147 1400 0.0139 0.8210 0.7615 0.7901 0.9625
0.9310 1600 0.0129 0.8426 0.7848 0.8127 0.9651

Framework Versions

  • Python: 3.10.12
  • SpanMarker: 1.5.0
  • Transformers: 4.38.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}