Qwen2.5-1.5B-Instruct-finetune-ru-news-lora

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5295
  • Perplexity: 4.6645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 111
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Perplexity
No log 0 0 1.7086 5.5805
1.5638 1.0 75 1.6235 5.1242
1.6127 2.0 150 1.5856 4.9323
1.6656 3.0 225 1.5689 4.8497
1.6207 4.0 300 1.5578 4.7967
1.5559 5.0 375 1.5510 4.7642
1.5766 6.0 450 1.5463 4.7420
1.5744 7.0 525 1.5428 4.7257
1.5892 8.0 600 1.5401 4.7129
1.4133 9.0 675 1.5378 4.7022
1.6007 10.0 750 1.5360 4.6939
1.6776 11.0 825 1.5345 4.6872
1.4363 12.0 900 1.5332 4.6814
1.3633 13.0 975 1.5323 4.6771
1.4944 14.0 1050 1.5314 4.6730
1.4514 15.0 1125 1.5308 4.6703
1.4892 16.0 1200 1.5303 4.6681
1.3994 17.0 1275 1.5299 4.6664
1.507 18.0 1350 1.5296 4.6651
1.4906 19.0 1425 1.5295 4.6645
1.4982 19.7383 1480 1.5295 4.6645

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sergey21000/Qwen2.5-1.5B-Instruct-finetune-ru-news-lora

Base model

Qwen/Qwen2.5-1.5B
Adapter
(234)
this model