|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: DeBERTaV3_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# DeBERTaV3_model |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1419 |
|
- Accuracy: 0.9615 |
|
- F1: 0.8400 |
|
- Precision: 0.875 |
|
- Recall: 0.8077 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 26 | 0.3810 | 0.875 | 0.0 | 0.0 | 0.0 | |
|
| No log | 2.0 | 52 | 0.3740 | 0.875 | 0.0 | 0.0 | 0.0 | |
|
| No log | 3.0 | 78 | 0.3303 | 0.875 | 0.0 | 0.0 | 0.0 | |
|
| No log | 4.0 | 104 | 0.2997 | 0.875 | 0.0 | 0.0 | 0.0 | |
|
| No log | 5.0 | 130 | 0.2484 | 0.8894 | 0.2581 | 0.8 | 0.1538 | |
|
| No log | 6.0 | 156 | 0.1951 | 0.9375 | 0.6977 | 0.8824 | 0.5769 | |
|
| No log | 7.0 | 182 | 0.1752 | 0.9423 | 0.7273 | 0.8889 | 0.6154 | |
|
| No log | 8.0 | 208 | 0.1582 | 0.9519 | 0.7917 | 0.8636 | 0.7308 | |
|
| No log | 9.0 | 234 | 0.1449 | 0.9615 | 0.8400 | 0.875 | 0.8077 | |
|
| No log | 10.0 | 260 | 0.1419 | 0.9615 | 0.8400 | 0.875 | 0.8077 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|