|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: train |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9349593495934959 |
|
- name: Recall |
|
type: recall |
|
value: 0.9468562874251497 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9408702119747119 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9473684210526315 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2702 |
|
- Precision: 0.9350 |
|
- Recall: 0.9469 |
|
- F1: 0.9409 |
|
- Accuracy: 0.9474 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 4.17 | 250 | 1.0496 | 0.6714 | 0.7507 | 0.7088 | 0.7746 | |
|
| 1.4245 | 8.33 | 500 | 0.5492 | 0.8401 | 0.8728 | 0.8561 | 0.8735 | |
|
| 1.4245 | 12.5 | 750 | 0.3773 | 0.8934 | 0.9162 | 0.9047 | 0.9240 | |
|
| 0.3461 | 16.67 | 1000 | 0.3212 | 0.9287 | 0.9364 | 0.9325 | 0.9380 | |
|
| 0.3461 | 20.83 | 1250 | 0.2888 | 0.9276 | 0.9401 | 0.9338 | 0.9440 | |
|
| 0.1502 | 25.0 | 1500 | 0.2749 | 0.9299 | 0.9431 | 0.9365 | 0.9474 | |
|
| 0.1502 | 29.17 | 1750 | 0.2741 | 0.9321 | 0.9446 | 0.9383 | 0.9469 | |
|
| 0.0866 | 33.33 | 2000 | 0.2715 | 0.9328 | 0.9454 | 0.9390 | 0.9465 | |
|
| 0.0866 | 37.5 | 2250 | 0.2740 | 0.9314 | 0.9446 | 0.9379 | 0.9452 | |
|
| 0.0635 | 41.67 | 2500 | 0.2702 | 0.9350 | 0.9469 | 0.9409 | 0.9474 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|