|
--- |
|
base_model: |
|
- Undi95/Llama-3-Unholy-8B |
|
- Locutusque/llama-3-neural-chat-v1-8b |
|
- ruslanmv/Medical-Llama3-8B-16bit |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
license: llama2 |
|
language: |
|
- en |
|
--- |
|
|
|
### Medichat-Llama3-8B |
|
|
|
![img](https://huggingface.co/sethuiyer/Medichat-Llama3-8B/resolve/main/medichat_llam3.webp) |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
|
|
models: |
|
- model: Undi95/Llama-3-Unholy-8B |
|
parameters: |
|
weight: [0.25, 0.35, 0.45, 0.35, 0.25] |
|
density: [0.1, 0.25, 0.5, 0.25, 0.1] |
|
- model: Locutusque/llama-3-neural-chat-v1-8b |
|
- model: ruslanmv/Medical-Llama3-8B-16bit |
|
parameters: |
|
weight: [0.55, 0.45, 0.35, 0.45, 0.55] |
|
density: [0.1, 0.25, 0.5, 0.25, 0.1] |
|
merge_method: dare_ties |
|
base_model: Locutusque/llama-3-neural-chat-v1-8b |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
|
|
``` |
|
|
|
### Usage: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("sethuiyer/Medichat-Llama3-8B") |
|
model = AutoModelForCausalLM.from_pretrained("sethuiyer/Medichat-Llama3-8B").to("cuda") |
|
|
|
# Function to format and generate response with prompt engineering using a chat template |
|
def askme(question): |
|
sys_message = ''' |
|
You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and |
|
provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. |
|
''' |
|
|
|
# Create messages structured for the chat template |
|
messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}] |
|
|
|
# Applying chat template |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True) # Adjust max_new_tokens for longer responses |
|
|
|
# Extract and return the generated text |
|
answer = tokenizer.batch_decode(outputs)[0].strip() |
|
return answer |
|
|
|
# Example usage |
|
question = ''' |
|
Symptoms: |
|
Dizziness, headache and nausea. |
|
|
|
What is the differnetial diagnosis? |
|
''' |
|
print(askme(question)) |
|
``` |
|
|