Nandine-7b / README.md
sethuiyer's picture
Upload folder using huggingface_hub
bf155cb verified
|
raw
history blame
1.77 kB
---
tags:
- merge
- mergekit
- lazymergekit
- senseable/Westlake-7B
- Guilherme34/Samantha-v2
- uukuguy/speechless-mistral-six-in-one-7b
base_model:
- senseable/Westlake-7B
- Guilherme34/Samantha-v2
- uukuguy/speechless-mistral-six-in-one-7b
---
# Nandine-7b
Nandine-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [senseable/Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
* [Guilherme34/Samantha-v2](https://huggingface.co/Guilherme34/Samantha-v2)
* [uukuguy/speechless-mistral-six-in-one-7b](https://huggingface.co/uukuguy/speechless-mistral-six-in-one-7b)
## 🧩 Configuration
```yaml
models:
- model: senseable/Westlake-7B
parameters:
weight: 0.55
density: 0.6
- model: Guilherme34/Samantha-v2
parameters:
weight: 0.10
density: 0.3
- model: uukuguy/speechless-mistral-six-in-one-7b
parameters:
weight: 0.35
density: 0.6
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sethuiyer/Nandine-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```