sfulay's picture
Model save
afd7314 verified
|
raw
history blame
3.58 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-gpt_consistent-reward-scale-05
    results: []

zephyr-7b-dpo-full-gpt_consistent-reward-scale-05

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4931
  • Rewards/chosen: -1.6483
  • Rewards/rejected: -2.9482
  • Rewards/accuracies: 0.7414
  • Rewards/margins: 1.2999
  • Logps/rejected: -541.3424
  • Logps/chosen: -449.9160
  • Logits/rejected: 3.3584
  • Logits/chosen: 2.0773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6653 0.1147 50 0.6513 -0.0038 -0.1422 0.6940 0.1384 -260.7392 -285.4682 -2.4923 -2.5731
0.5699 0.2294 100 0.5578 -0.8876 -1.6121 0.6853 0.7245 -407.7342 -373.8545 0.8771 0.3393
0.5416 0.3440 150 0.5320 -1.1447 -2.1157 0.7026 0.9709 -458.0881 -399.5647 2.1978 1.2442
0.5318 0.4587 200 0.5122 -1.1906 -2.2306 0.7284 1.0400 -469.5803 -404.1460 2.4483 1.3448
0.5178 0.5734 250 0.5029 -1.4402 -2.5615 0.7284 1.1212 -502.6709 -429.1149 2.5336 1.3215
0.519 0.6881 300 0.4985 -1.4880 -2.6823 0.7371 1.1943 -514.7540 -433.8906 2.6886 1.3895
0.5137 0.8028 350 0.4931 -1.6128 -2.8601 0.7328 1.2473 -532.5296 -446.3658 3.1580 1.8716
0.5033 0.9174 400 0.4931 -1.6483 -2.9482 0.7414 1.2999 -541.3424 -449.9160 3.3584 2.0773

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1