ppo-AntBulletEnv-v0 / README.md
sgoodfriend's picture
PPO playing AntBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
b9803e8
|
raw
history blame
5.52 kB
metadata
library_name: rl-algo-impls
tags:
  - AntBulletEnv-v0
  - ppo
  - deep-reinforcement-learning
  - reinforcement-learning
model-index:
  - name: ppo
    results:
      - metrics:
          - type: mean_reward
            value: 2681.31 +/- 77.63
            name: mean_reward
        task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: AntBulletEnv-v0
          type: AntBulletEnv-v0

PPO Agent playing AntBulletEnv-v0

This is a trained model of a PPO agent playing AntBulletEnv-v0 using the /sgoodfriend/rl-algo-impls repo.

All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/09frjfcs.

Training Results

This model was trained from 3 trainings of PPO agents using different initial seeds. These agents were trained by checking out 2067e21. The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).

algo env seed reward_mean reward_std eval_episodes best wandb_url
ppo AntBulletEnv-v0 1 2681.31 77.631 16 * wandb
ppo AntBulletEnv-v0 2 2515.68 15.6691 16 wandb
ppo AntBulletEnv-v0 3 2555.11 45.9397 16 wandb

Prerequisites: Weights & Biases (WandB)

Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB.

Before doing anything below, you'll need to create a wandb account and run wandb login.

Usage

/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls

Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: 2067e21.

# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/2nh30771

Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the colab_enjoy.ipynb notebook.

Training

If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: 2067e21. While training is deterministic, different hardware will give different results.

python train.py --algo ppo --env AntBulletEnv-v0 --seed 1

Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the colab_train.ipynb notebook.

Benchmarking (with Lambda Labs instance)

This and other models from https://api.wandb.ai/links/sgoodfriend/09frjfcs were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal:

git clone [email protected]:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh [-a {"ppo a2c dqn vpg"}] [-e ENVS] [-j {6}] [-p {rl-algo-impls-benchmarks}] [-s {"1 2 3"}]

Alternative: Google Colab Pro+

As an alternative, colab_benchmark.ipynb, can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit.

Hyperparameters

This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data:

algo: ppo
algo_hyperparams:
  batch_size: 128
  clip_range: 0.4
  ent_coef: 0
  gae_lambda: 0.9
  gamma: 0.99
  learning_rate: 3.0e-05
  max_grad_norm: 0.5
  n_epochs: 20
  n_steps: 512
  vf_coef: 0.5
device: auto
env: AntBulletEnv-v0
env_hyperparams:
  n_envs: 16
  normalize: true
env_id: null
eval_params: {}
n_timesteps: 2000000
policy_hyperparams:
  activation_fn: relu
  pi_hidden_sizes:
  - 256
  - 256
  v_hidden_sizes:
  - 256
  - 256
seed: 1
use_deterministic_algorithms: true
wandb_entity: null
wandb_group: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_2067e21
- host_155-248-199-228