training

This model is a fine-tuned version of nlpaueb/bert-base-uncased-contracts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0369
  • Precision: 0.8095
  • Recall: 0.8293
  • F1: 0.8193
  • Accuracy: 0.9881

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 11 0.4084 0.0 0.0 0.0 0.8828
No log 2.0 22 0.2084 0.025 0.0122 0.0164 0.9172
No log 3.0 33 0.1223 0.4615 0.3659 0.4082 0.9488
No log 4.0 44 0.1054 0.5417 0.4756 0.5065 0.9572
No log 5.0 55 0.0662 0.6279 0.6585 0.6429 0.9744
No log 6.0 66 0.0758 0.6104 0.5732 0.5912 0.9723
No log 7.0 77 0.0424 0.7619 0.7805 0.7711 0.9842
No log 8.0 88 0.0377 0.7791 0.8171 0.7976 0.9867
No log 9.0 99 0.0419 0.8235 0.8537 0.8383 0.9881
No log 10.0 110 0.0378 0.8214 0.8415 0.8313 0.9874
No log 11.0 121 0.0367 0.8 0.8293 0.8144 0.9874
No log 12.0 132 0.0390 0.8313 0.8415 0.8364 0.9867
No log 13.0 143 0.0365 0.8095 0.8293 0.8193 0.9884
No log 14.0 154 0.0365 0.8214 0.8415 0.8313 0.9884
No log 15.0 165 0.0369 0.8095 0.8293 0.8193 0.9881

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sguarnaccio/le_signatory

Finetuned
(4)
this model