BengaliRegionalASR / README.md
sha1779's picture
Update README.md
662ba0a verified
---
license: apache-2.0
language:
- bn
base_model:
- openai/whisper-small
pipeline_tag: automatic-speech-recognition
---
BengaliRegionalASR trained on bengali regional dialact dataset. [sha1779/Bengali_Regional_dataset](https://huggingface.co/datasets/sha1779/Bengali_Regional_dataset)
This model is trained on this barishal regional data only. The dataset is taken from [ভাষা-বিচিত্রা: ASR for Regional Dialects](https://www.kaggle.com/competitions/ben10) competition.
# Try the model
```bash
!pip install librosa torch torchaudio transformers
```
```py
import os
import requests
import librosa
import torch
import numpy as np
from transformers import WhisperTokenizer, WhisperProcessor, WhisperFeatureExtractor, WhisperForConditionalGeneration
# Define model and device
model_path_ = "sha1779/BengaliRegionalASR"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path_)
tokenizer = WhisperTokenizer.from_pretrained(model_path_)
processor = WhisperProcessor.from_pretrained(model_path_)
model = WhisperForConditionalGeneration.from_pretrained(model_path_).to(device)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="bengali", task="transcribe")
# MP3 URL
mp3_url = "https://huggingface.co/sha1779/BengaliRegionalASR/resolve/main/Mp3/valid_barishal%20(1).wav"
local_audio_path = "temp_audio.wav"
# Download the MP3 file
print("Downloading audio file...")
response = requests.get(mp3_url)
if response.status_code == 200:
with open(local_audio_path, 'wb') as f:
f.write(response.content)
print("Download complete.")
else:
raise Exception(f"Failed to download file. HTTP status code: {response.status_code}")
# Load and preprocess the audio
try:
print("Processing audio file...")
speech_array, sampling_rate = librosa.load(local_audio_path, sr=16000)
speech_array = librosa.resample(np.asarray(speech_array), orig_sr=sampling_rate, target_sr=16000)
input_features = feature_extractor(speech_array, sampling_rate=16000, return_tensors="pt").input_features
# Generate transcription
print("Generating transcription...")
predicted_ids = model.generate(inputs=input_features.to(device))[0]
transcription = processor.decode(predicted_ids, skip_special_tokens=True)
# Print the transcription
print("Transcription:", transcription)
finally:
# Clean up: delete the temporary audio file
if os.path.exists(local_audio_path):
os.remove(local_audio_path)
print("Temporary audio file deleted.")
```
## For larger audio , more than 30s
```py
import os
import requests
import librosa
import torch
import numpy as np
from transformers import WhisperTokenizer, WhisperProcessor, WhisperFeatureExtractor, WhisperForConditionalGeneration
# Define model and device
model_path_ = "sha1779/BengaliRegionalASR"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path_)
tokenizer = WhisperTokenizer.from_pretrained(model_path_)
processor = WhisperProcessor.from_pretrained(model_path_)
model = WhisperForConditionalGeneration.from_pretrained(model_path_).to(device)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="bengali", task="transcribe")
# Remote MP3 file URL
mp3_url = "https://huggingface.co/sha1779/BengaliRegionalASR/resolve/main/Mp3/valid_barishal%20(1).wav"
local_audio_path = "temp_audio.wav"
# Download the MP3 file
response = requests.get(mp3_url)
if response.status_code == 200:
with open(local_audio_path, 'wb') as f:
f.write(response.content)
else:
raise Exception(f"Failed to download file. HTTP status code: {response.status_code}")
# Load audio
speech_array, sampling_rate = librosa.load(local_audio_path, sr=16000)
# Define chunk parameters
chunk_duration = 30 # seconds
overlap = 5 # seconds
chunk_size = int(chunk_duration * sampling_rate)
overlap_size = int(overlap * sampling_rate)
# Split audio into chunks
chunks = [
speech_array[start : start + chunk_size]
for start in range(0, len(speech_array), chunk_size - overlap_size)
]
# Process and transcribe each chunk
transcriptions = []
for i, chunk in enumerate(chunks):
# Resample and extract features
chunk = librosa.resample(np.asarray(chunk), orig_sr=sampling_rate, target_sr=16000)
input_features = feature_extractor(chunk, sampling_rate=16000, return_tensors="pt").input_features
# Generate transcription
predicted_ids = model.generate(inputs=input_features.to(device))[0]
transcription = processor.decode(predicted_ids, skip_special_tokens=True)
transcriptions.append(transcription)
# Combine and print the transcriptions
print(" ".join(transcriptions))
# Clean up temporary file
os.remove(local_audio_path)
```
# Evaluation
Word Error Rate 0.65 %