urdu_topic_modeling

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("shaistaDev7/urdu_topic_modeling")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 1008
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 کینسر - استعمال - جسم - علاج - افراد 315 0_کینسر_استعمال_جسم_علاج
1 ٹیم - کرکٹ - محمد - میڈل - انگلینڈ 240 1_ٹیم_کرکٹ_محمد_میڈل
2 روپے - ارب - فیصد - ٹیکس - حکومت 238 2_روپے_ارب_فیصد_ٹیکس
3 فلم - خان - ووڈ - بالی - اداکارہ 205 3_فلم_خان_ووڈ_بالی
4 ظفر - میشا - شفیع - علی - جنسی 10 4_ظفر_میشا_شفیع_علی

Training hyperparameters

  • calculate_probabilities: True
  • language: urdu
  • low_memory: True
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.5
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.2.2
  • Transformers: 4.35.2
  • Numba: 0.58.1
  • Plotly: 5.15.0
  • Python: 3.10.12
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.