shane062's picture
End of training
4ee56be verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-base-finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 67.56756756756756

whisper-base-finetuned

This model is a fine-tuned version of openai/whisper-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9952
  • Wer Ortho: 67.5676
  • Wer: 67.5676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0652 16.6667 50 0.9612 67.5676 67.5676
0.0004 33.3333 100 0.9952 67.5676 67.5676

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cpu
  • Datasets 2.19.1
  • Tokenizers 0.19.1