|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: bert-base-banking77-pt2 |
|
results: [] |
|
datasets: |
|
- PolyAI/banking77 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-banking77-pt2 |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an PolyAI/banking77 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3089 |
|
- F1: 0.9362 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.261 | 1.0 | 313 | 1.0894 | 0.7969 | |
|
| 0.5499 | 2.0 | 626 | 0.4196 | 0.9103 | |
|
| 0.305 | 3.0 | 939 | 0.3403 | 0.9157 | |
|
| 0.1277 | 4.0 | 1252 | 0.3020 | 0.9251 | |
|
| 0.0857 | 5.0 | 1565 | 0.2911 | 0.9306 | |
|
| 0.0347 | 6.0 | 1878 | 0.2865 | 0.9333 | |
|
| 0.0251 | 7.0 | 2191 | 0.2994 | 0.9362 | |
|
| 0.0111 | 8.0 | 2504 | 0.2970 | 0.9365 | |
|
| 0.0075 | 9.0 | 2817 | 0.3102 | 0.9364 | |
|
| 0.0058 | 10.0 | 3130 | 0.3089 | 0.9362 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|
|
## How to use |
|
|
|
```py |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline |
|
|
|
ckpt = 'sharmax-vikas/bert-base-banking77-pt2' |
|
tokenizer = AutoTokenizer.from_pretrained(ckpt) |
|
model = AutoModelForSequenceClassification.from_pretrained(ckpt) |
|
|
|
classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) |
|
classifier('What is the base of the exchange rates?') |
|
# Output: [{'label': 'exchange_rate', 'score': 0.9961327314376831}] |
|
``` |