shayonhuggingface's picture
update model card README.md
c7a80c9
|
raw
history blame
5.73 kB
metadata
base_model: Fsoft-AIC/videberta-xsmall
tags:
  - generated_from_trainer
datasets:
  - vietnamese_students_feedback
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: videberta-sentiment-analysis
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: vietnamese_students_feedback
          type: vietnamese_students_feedback
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9470198675496688
          - name: Precision
            type: precision
            value: 0.9480840543881335
          - name: Recall
            type: recall
            value: 0.9527950310559006
          - name: F1
            type: f1
            value: 0.9504337050805451

videberta-sentiment-analysis

This model is a fine-tuned version of Fsoft-AIC/videberta-xsmall on the vietnamese_students_feedback dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2787
  • Accuracy: 0.9470
  • Precision: 0.9481
  • Recall: 0.9528
  • F1: 0.9504

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6152 0.58 100 0.4777 0.8007 0.8580 0.7503 0.8005
0.408 1.16 200 0.3241 0.8669 0.8943 0.8509 0.8721
0.3268 1.74 300 0.2726 0.8954 0.8837 0.9255 0.9041
0.2654 2.33 400 0.2296 0.9199 0.9212 0.9292 0.9252
0.253 2.91 500 0.2088 0.9159 0.9206 0.9217 0.9212
0.2014 3.49 600 0.2318 0.9172 0.9028 0.9466 0.9242
0.1939 4.07 700 0.2131 0.9212 0.9224 0.9304 0.9264
0.1698 4.65 800 0.2005 0.9311 0.9499 0.9193 0.9343
0.1822 5.23 900 0.2249 0.9245 0.9089 0.9540 0.9309
0.1441 5.81 1000 0.2038 0.9311 0.9311 0.9404 0.9357
0.1403 6.4 1100 0.2044 0.9338 0.9315 0.9453 0.9383
0.1377 6.98 1200 0.1991 0.9417 0.9567 0.9329 0.9447
0.1191 7.56 1300 0.2955 0.9119 0.8792 0.9677 0.9213
0.1227 8.14 1400 0.2362 0.9318 0.9199 0.9553 0.9372
0.1023 8.72 1500 0.2221 0.9358 0.9286 0.9528 0.9405
0.1049 9.3 1600 0.1940 0.9424 0.9454 0.9466 0.9460
0.1002 9.88 1700 0.1949 0.9404 0.9649 0.9217 0.9428
0.0946 10.47 1800 0.2232 0.9404 0.9625 0.9242 0.9430
0.0911 11.05 1900 0.2016 0.9457 0.9641 0.9329 0.9482
0.0818 11.63 2000 0.2636 0.9311 0.9128 0.9627 0.9371
0.0889 12.21 2100 0.2279 0.9450 0.9524 0.9441 0.9482
0.0668 12.79 2200 0.2460 0.9411 0.9409 0.9491 0.9450
0.0635 13.37 2300 0.2764 0.9424 0.9465 0.9453 0.9459
0.072 13.95 2400 0.2519 0.9437 0.9390 0.9565 0.9477
0.0697 14.53 2500 0.2705 0.9404 0.9408 0.9478 0.9443
0.0602 15.12 2600 0.2686 0.9450 0.9513 0.9453 0.9483
0.065 15.7 2700 0.2629 0.9450 0.9501 0.9466 0.9484
0.0628 16.28 2800 0.2644 0.9450 0.9547 0.9416 0.9481
0.0505 16.86 2900 0.2704 0.9424 0.9400 0.9528 0.9463
0.0471 17.44 3000 0.2787 0.9470 0.9481 0.9528 0.9504
0.0568 18.02 3100 0.2766 0.9450 0.9424 0.9553 0.9488
0.0523 18.6 3200 0.2659 0.9424 0.9421 0.9503 0.9462
0.0487 19.19 3300 0.3091 0.9338 0.9222 0.9565 0.9390
0.0529 19.77 3400 0.3575 0.9272 0.9045 0.9652 0.9339
0.0484 20.35 3500 0.3228 0.9358 0.9214 0.9615 0.9410
0.0456 20.93 3600 0.2694 0.9437 0.9412 0.9540 0.9476
0.0424 21.51 3700 0.2793 0.9404 0.9376 0.9516 0.9445
0.045 22.09 3800 0.2953 0.9417 0.9356 0.9565 0.9459
0.0395 22.67 3900 0.2840 0.9417 0.9377 0.9540 0.9458
0.0418 23.26 4000 0.3527 0.9305 0.9108 0.9640 0.9366

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3