|
--- |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
base_model: MCG-NJU/videomae-base |
|
model-index: |
|
- name: videomae-base-finetuned-ucf_crime2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-ucf_crime2 |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8463 |
|
- Accuracy: 0.5200 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 2700 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.475 | 0.05 | 135 | 0.9935 | 0.6004 | |
|
| 1.44 | 1.05 | 270 | 1.4196 | 0.4274 | |
|
| 1.1084 | 2.05 | 405 | 0.9135 | 0.6737 | |
|
| 0.8732 | 3.05 | 540 | 1.1984 | 0.5479 | |
|
| 1.4184 | 4.05 | 675 | 1.3373 | 0.4926 | |
|
| 1.1355 | 5.05 | 810 | 0.9888 | 0.6148 | |
|
| 0.4522 | 6.05 | 945 | 1.0745 | 0.5694 | |
|
| 0.7754 | 7.05 | 1080 | 1.5848 | 0.5330 | |
|
| 1.1235 | 8.05 | 1215 | 1.3688 | 0.5753 | |
|
| 1.611 | 9.05 | 1350 | 0.6958 | 0.7694 | |
|
| 0.5714 | 10.05 | 1485 | 0.8027 | 0.7542 | |
|
| 0.716 | 11.05 | 1620 | 1.3503 | 0.6782 | |
|
| 0.6642 | 12.05 | 1755 | 1.0798 | 0.6957 | |
|
| 0.8451 | 13.05 | 1890 | 1.2328 | 0.7479 | |
|
| 0.6157 | 14.05 | 2025 | 1.9403 | 0.5762 | |
|
| 0.3358 | 15.05 | 2160 | 1.3435 | 0.6939 | |
|
| 0.5394 | 16.05 | 2295 | 1.2524 | 0.7056 | |
|
| 0.3334 | 17.05 | 2430 | 1.1190 | 0.7645 | |
|
| 0.3513 | 18.05 | 2565 | 1.2137 | 0.7461 | |
|
| 0.2531 | 19.05 | 2700 | 1.2131 | 0.7362 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|