Fix incorrect variable names in code example

#4
by mrvnthss - opened
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -45,19 +45,19 @@ model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ci
45
  semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
46
  semantic_outputs = model(**semantic_inputs)
47
  # pass through image_processor for postprocessing
48
- predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
49
 
50
  # Instance Segmentation
51
  instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
52
  instance_outputs = model(**instance_inputs)
53
  # pass through image_processor for postprocessing
54
- predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
55
 
56
  # Panoptic Segmentation
57
  panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
58
  panoptic_outputs = model(**panoptic_inputs)
59
  # pass through image_processor for postprocessing
60
- predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
61
  ```
62
 
63
  For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).
 
45
  semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
46
  semantic_outputs = model(**semantic_inputs)
47
  # pass through image_processor for postprocessing
48
+ predicted_semantic_map = processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])[0]
49
 
50
  # Instance Segmentation
51
  instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
52
  instance_outputs = model(**instance_inputs)
53
  # pass through image_processor for postprocessing
54
+ predicted_instance_map = processor.post_process_instance_segmentation(instance_outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
55
 
56
  # Panoptic Segmentation
57
  panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
58
  panoptic_outputs = model(**panoptic_inputs)
59
  # pass through image_processor for postprocessing
60
+ predicted_semantic_map = processor.post_process_panoptic_segmentation(panoptic_outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
61
  ```
62
 
63
  For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).