File size: 16,031 Bytes
0b59015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2-VL model."""

import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss, LayerNorm

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)

if is_flash_attn_2_available():
    from flash_attn import flash_attn_varlen_func

    from transformers.modeling_flash_attention_utils import _flash_attention_forward
else:
    flash_attn_varlen_func = None

from .configuration_qwen2_vit import Qwen2VLVisionConfig

# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
    """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).

    Explanation:
        Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
        sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
        vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately.
        Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
        For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
        height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
        difference with modern LLMs.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        mrope_section(`List(int)`):
            Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    mrope_section = mrope_section * 2
    cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
        unsqueeze_dim
    )
    sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
        unsqueeze_dim
    )

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    orig_dtype = tensor.dtype
    tensor = tensor.float()
    cos = freqs.cos()
    sin = freqs.sin()
    cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    output = (tensor * cos) + (rotate_half(tensor) * sin)
    output = output.to(orig_dtype)
    return output

class VisionRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs

class PatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: int = 14,
        temporal_patch_size: int = 2,
        in_channels: int = 3,
        embed_dim: int = 1152,
    ) -> None:
        super().__init__()
        self.patch_size = patch_size
        self.temporal_patch_size = temporal_patch_size
        self.in_channels = in_channels
        self.embed_dim = embed_dim

        kernel_size = [temporal_patch_size, patch_size, patch_size]
        self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        target_dtype = self.proj.weight.dtype
        hidden_states = hidden_states.view(
            -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
        )
        hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
        return hidden_states

class PatchMerger(nn.Module):
    def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
        super().__init__()
        self.hidden_size = context_dim * (spatial_merge_size**2)
        self.ln_q = LayerNorm(context_dim, eps=1e-6)
        self.mlp = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, dim),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
        return x

class VisionMlp(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
        super().__init__()
        self.fc1 = nn.Linear(dim, hidden_dim)
        self.act = ACT2FN[hidden_act]
        self.fc2 = nn.Linear(hidden_dim, dim)

    def forward(self, x) -> torch.Tensor:
        return self.fc2(self.act(self.fc1(x)))

class VisionAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 16) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(
        self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.full(
            [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
        )
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0

        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)
        attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
        attn_weights = attn_weights + attention_mask
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
        attn_output = torch.matmul(attn_weights, v)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)
        attn_output = self.proj(attn_output)
        return attn_output

class VisionFlashAttention2(nn.Module):
    def __init__(self, dim: int, num_heads: int = 16) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(
        self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
        attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
            seq_length, -1
        )
        attn_output = self.proj(attn_output)
        return attn_output

class VisionSdpaAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 16) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(
        self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)
        attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)
        attn_output = self.proj(attn_output)
        return attn_output

QWEN2_VL_VISION_ATTENTION_CLASSES = {
    "eager": VisionAttention,
    "flash_attention_2": VisionFlashAttention2,
    "sdpa": VisionSdpaAttention,
}

class Qwen2VLVisionBlock(nn.Module):
    def __init__(self, config, attn_implementation: str = "sdpa") -> None:
        super().__init__()
        self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
        self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
        mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)

        self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
            config.embed_dim, num_heads=config.num_heads
        )
        self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)

    def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
        hidden_states = hidden_states + self.attn(
            self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
        )
        hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
        return hidden_states

class Qwen2ViTPreTrainedModel(PreTrainedModel):
    config_class = Qwen2VLVisionConfig
    _no_split_modules = ["Qwen2VLVisionBlock"]

    def __init__(self, config) -> None:
        super().__init__(config)
        self.spatial_merge_size = config.spatial_merge_size

        self.patch_embed = PatchEmbed(
            patch_size=config.patch_size,
            temporal_patch_size=config.temporal_patch_size,
            in_channels=config.in_channels,
            embed_dim=config.embed_dim,
        )

        head_dim = config.embed_dim // config.num_heads
        self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)

        self.blocks = nn.ModuleList(
            [Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
        )
        self.merger = PatchMerger(
            dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
        )

    def get_dtype(self) -> torch.dtype:
        return self.blocks[0].mlp.fc2.weight.dtype

    def get_device(self) -> torch.device:
        return self.blocks[0].mlp.fc2.weight.device

    def rot_pos_emb(self, grid_thw):
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
        hidden_states = self.patch_embed(hidden_states)
        rotary_pos_emb = self.rot_pos_emb(grid_thw)

        cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
            dim=0, dtype=torch.int32
        )
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        for blk in self.blocks:
            hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)

        return self.merger(hidden_states)