layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5624
  • Precision: 0.4115
  • Recall: 0.5397
  • F1: 0.4670
  • Accuracy: 0.4351

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.06 10 3.8065 0.1637 0.2582 0.2003 0.2585
No log 0.12 20 3.4787 0.4661 0.3862 0.4224 0.3353
No log 0.19 30 3.2587 0.4332 0.4731 0.4522 0.3667
No log 0.25 40 3.0615 0.4144 0.4873 0.4479 0.3846
No log 0.31 50 2.9052 0.3993 0.5090 0.4475 0.4024
No log 0.38 60 2.7819 0.3876 0.5165 0.4429 0.4143
No log 0.44 70 2.6853 0.3891 0.5202 0.4452 0.4164
No log 0.5 80 2.6245 0.3942 0.5269 0.4510 0.4236
No log 0.56 90 2.5777 0.4056 0.5352 0.4614 0.4312
No log 0.62 100 2.5624 0.4115 0.5397 0.4670 0.4351

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cpu
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results