shinbaxu commited on
Commit
bd177df
·
1 Parent(s): 0f6fc37

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_100
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: test
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.4115296803652968
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.5396706586826348
31
+ - name: F1
32
+ type: f1
33
+ value: 0.46696891191709844
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.4350594227504245
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_100
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 2.5624
47
+ - Precision: 0.4115
48
+ - Recall: 0.5397
49
+ - F1: 0.4670
50
+ - Accuracy: 0.4351
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 100
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 0.06 | 10 | 3.8065 | 0.1637 | 0.2582 | 0.2003 | 0.2585 |
82
+ | No log | 0.12 | 20 | 3.4787 | 0.4661 | 0.3862 | 0.4224 | 0.3353 |
83
+ | No log | 0.19 | 30 | 3.2587 | 0.4332 | 0.4731 | 0.4522 | 0.3667 |
84
+ | No log | 0.25 | 40 | 3.0615 | 0.4144 | 0.4873 | 0.4479 | 0.3846 |
85
+ | No log | 0.31 | 50 | 2.9052 | 0.3993 | 0.5090 | 0.4475 | 0.4024 |
86
+ | No log | 0.38 | 60 | 2.7819 | 0.3876 | 0.5165 | 0.4429 | 0.4143 |
87
+ | No log | 0.44 | 70 | 2.6853 | 0.3891 | 0.5202 | 0.4452 | 0.4164 |
88
+ | No log | 0.5 | 80 | 2.6245 | 0.3942 | 0.5269 | 0.4510 | 0.4236 |
89
+ | No log | 0.56 | 90 | 2.5777 | 0.4056 | 0.5352 | 0.4614 | 0.4312 |
90
+ | No log | 0.62 | 100 | 2.5624 | 0.4115 | 0.5397 | 0.4670 | 0.4351 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.28.0
96
+ - Pytorch 2.0.1+cpu
97
+ - Datasets 2.12.0
98
+ - Tokenizers 0.13.3