shisa-v2 Base Model ablation
The 8e-6 version is better and you should probably use that one.
Using a fork of Lightblue's Shaberi benchmark framework:
Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
---|---|---|---|---|---|
gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 |
CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
gpt-3.5-turbo-0125 | 7.17 | 7.24 | 6.98 | 7.64 | 6.82 |
shisa-ai/shisa-v1-llama3-70b | 7.17 | 7.16 | 7.45 | 7.98 | 6.09 |
karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
shisa-ai/shisa-v1-llama3-8b^ | 6.29 | 6.62 | 6.41 | 7.05 | 5.07 |
shisa-ai/shisa-swallowmx-13a47b-v1 | 6.17 | 6.48 | 6.07 | 7.11 | 5.03 |
shisa-ai/shisa-v1-llama3-8b | 6.10 | 6.52 | 6.20 | 6.37 | 5.33 |
Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
shisa-ai/shisa-v1-gemma-8b | 5.64 | 6.50 | 5.42 | 5.10 | 5.55 |
augmxnt/shisa-gamma-7b-v1 | 5.56 | 5.84 | 4.00 | 6.73 | 5.68 |
lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
shisa-ai/shisa-v1-yi1.5-9b | 4.63 | 5.98 | 4.28 | 3.26 | 5.00 |
See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
hub_model_id: shisa-ai/shisa-llama3-70b-v1
hub_strategy: end
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-llama3-70b-v1
chat_template: llama3
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/basemodel-llama3-70b
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
shisa-llama3-70b-v1
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 87
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2478 | 0.0033 | 1 | 0.7102 |
0.7516 | 0.5008 | 154 | 0.4325 |
0.7185 | 1.0016 | 308 | 0.3966 |
0.3708 | 1.4862 | 462 | 0.3976 |
0.3758 | 1.9870 | 616 | 0.3840 |
0.0928 | 2.4699 | 770 | 0.4425 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for shisa-ai/shisa-v1-llama3-70b.2e5
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct