shisa-v2 Base Model ablation

The 8e-6 version is better and you should probably use that one.

Using a fork of Lightblue's Shaberi benchmark framework:

Model Average ELYZA-tasks-100 MT-Bench Rakuda Tengu-Bench
gpt-4-turbo-2024-04-09 8.75 8.78 8.74 9.18 8.31
CohereForAI/c4ai-command-r-plus 7.69 7.50 7.43 9.05 6.79
gpt-3.5-turbo-0125 7.17 7.24 6.98 7.64 6.82
shisa-ai/shisa-v1-llama3-70b 7.17 7.16 7.45 7.98 6.09
karakuri-ai/karakuri-lm-70b-chat-v0.1 6.84 6.86 6.43 7.85 6.23
lightblue/ao-karasu-72B 6.81 7.19 6.54 7.25 6.27
shisa-ai/shisa-v1-llama3-8b^ 6.29 6.62 6.41 7.05 5.07
shisa-ai/shisa-swallowmx-13a47b-v1 6.17 6.48 6.07 7.11 5.03
shisa-ai/shisa-v1-llama3-8b 6.10 6.52 6.20 6.37 5.33
Rakuten/RakutenAI-7B-chat 5.58 5.92 4.60 6.58 5.24
shisa-ai/shisa-v1-gemma-8b 5.64 6.50 5.42 5.10 5.55
augmxnt/shisa-gamma-7b-v1 5.56 5.84 4.00 6.73 5.68
lightblue/qarasu-14B-chat-plus-unleashed 5.20 5.58 4.74 5.46 5.01
cyberagent/calm2-7b-chat 4.76 4.90 3.58 5.75 4.81
mistralai/Mistral-7B-Instruct-v0.2 4.69 5.78 4.65 3.80 4.53
shisa-ai/shisa-v1-yi1.5-9b 4.63 5.98 4.28 3.26 5.00

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-70B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: shisa-ai/shisa-llama3-70b-v1
hub_strategy: end

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-llama3-70b-v1

chat_template: llama3
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/basemodel-llama3-70b

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

shisa-llama3-70b-v1

This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 87
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.2478 0.0033 1 0.7102
0.7516 0.5008 154 0.4325
0.7185 1.0016 308 0.3966
0.3708 1.4862 462 0.3976
0.3758 1.9870 616 0.3840
0.0928 2.4699 770 0.4425

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
70.6B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shisa-ai/shisa-v1-llama3-70b.2e5

Finetuned
(37)
this model

Dataset used to train shisa-ai/shisa-v1-llama3-70b.2e5