The was part of some LR ablations. It's not bad but you should probably prefer 8e-6

I ran the tests for 2 runs just to try to lower variance. These are all using temp 0.2, min_p 0.1, freq penalty 0.5

Model AVG Score ELYZA100 JA MT-Bench Rakuda Tengu-Bench JA Char %
shisa-v1-llama3-8b.lr-2e4 3.97 4.60 4.54 3.33 3.42 92.42%
shisa-v1-llama3-8b.lr-5e5 5.73 6.28 6.45 5.37 4.81 90.93%
shisa-v1-llama3-8b (2e5 avg) 6.33 6.51 6.66 6.68 5.48 91.51%
shisa-v1-llama3-8b.8e6 6.59 6.67 6.95 7.05 5.68 91.30%
shisa-v1-llama3-8b.5e6 6.42 6.33 6.76 7.15 5.45 91.56%
shisa-v1-llama3-8b.2e6 6.31 6.26 6.88 6.73 5.38 92.00%
  • The 2e-4 and 5e-5 are definitely overtrained and perform significantly worse.
  • 2e-5 is on the edge since weightwacher shows the embed as slightly overtrained for 2e-5, but NEFTune version is not
  • 8e-6 performs the best, and 5e-6 also performed slightly better than 2e-5

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: llama3
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lr-5e6

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-llama3-8b.lr-5e6

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 5e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

outputs/lr-5e6

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.3951 0.0064 1 0.8645
0.891 0.5020 79 0.5705
0.8575 1.0040 158 0.5243
0.7296 1.4853 237 0.5079
0.7068 1.9873 316 0.4976
0.6618 2.4694 395 0.5020

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
29
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shisa-ai/shisa-v1-llama3-8b.lr-5e6

Finetuned
(528)
this model

Dataset used to train shisa-ai/shisa-v1-llama3-8b.lr-5e6