YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Language Pair Finetuned:

  • en-mr

Metrics:

  • sacrebleu
    • WAT 2021: 16.11

mbart-large-finetuned-en-mr

Model Description

This is the mbart-large-50 model finetuned on En-Mr corpus.

Intended uses and limitations

Mostly useful for English to Marathi translation but the mbart-large-50 model also supports other language pairs

How to use

from transformers import MBartForConditionalGeneration, MBart50TokenizerFast

model = MBartForConditionalGeneration.from_pretrained("shivam/mbart-large-50-finetuned-en-mr")
tokenizer = MBart50TokenizerFast.from_pretrained("shivam/mbart-large-50-finetuned-en-mr", src_lang="en_XX", tgt_lang="mr_IN")

english_input_sentence = "The Prime Minister said that cleanliness, or Swachhta, is one of the most important aspects of preventive healthcare."
model_inputs = tokenizer(english_input_sentence, return_tensors="pt")
generated_tokens = model.generate(
    **model_inputs,
    forced_bos_token_id=tokenizer.lang_code_to_id["mr_IN"]
)
marathi_output_sentence = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)

print(marathi_output_sentence)
#स्वच्छता हा प्रतिबंधात्मक आरोग्य सेवेतील सर्वात महत्त्वाचा पैलू आहे, असे पंतप्रधान म्हणाले.

Limitations

The model was trained on Google Colab and as the training takes a lot of time the model was trained for small time and small number of epochs.

Eval results

WAT 2021: 16.11

Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.