wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5218
  • Wer: 0.3434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5634 1.0 500 2.0727 1.0096
0.9357 2.01 1000 0.6623 0.5634
0.4536 3.01 1500 1.4421 0.4829
0.3044 4.02 2000 0.4361 0.4363
0.2369 5.02 2500 0.5098 0.4495
0.1994 6.02 3000 0.4741 0.3711
0.1699 7.03 3500 0.4652 0.3898
0.1499 8.03 4000 0.4151 0.3949
0.1308 9.04 4500 0.4685 0.3838
0.1234 10.04 5000 0.5076 0.3794
0.1055 11.04 5500 0.4492 0.3790
0.0953 12.05 6000 0.4726 0.3679
0.0863 13.05 6500 0.4797 0.3717
0.0816 14.06 7000 0.4725 0.3655
0.0842 15.06 7500 0.5181 0.3405
0.0661 16.06 8000 0.5315 0.3510
0.0593 17.07 8500 0.5024 0.3668
0.0624 18.07 9000 0.5374 0.3663
0.0535 19.08 9500 0.4861 0.3517
0.0524 20.08 10000 0.4812 0.3574
0.0461 21.08 10500 0.4976 0.3431
0.0363 22.09 11000 0.5062 0.3476
0.0351 23.09 11500 0.5094 0.3479
0.0327 24.1 12000 0.5291 0.3455
0.0319 25.1 12500 0.5209 0.3460
0.0268 26.1 13000 0.5173 0.3481
0.0263 27.11 13500 0.5362 0.3486
0.0234 28.11 14000 0.5333 0.3444
0.0237 29.12 14500 0.5218 0.3434

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.1+cu113
  • Datasets 1.18.3
  • Tokenizers 0.13.0
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.