YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Steps to use this model
This model uses tokenizer 'rinna/japanese-roberta-base'. Therefore, below steps are critical to run the model correctly.
- Create a local root directory on your system and new python environment.
- Install below requirements
transformers==4.12.2
torch==1.10.0
numpy==1.21.3
pandas==1.3.4
sentencepiece==0.1.96
- Go to link: "https://huggingface.co/spaces/shubh2014shiv/Japanese_NLP/tree/main" and download the fine tuned weights "reviewSentiments_jp.pt" in same local root directory.
- Rename the downloaded weights as "reviewSentiments_jp.pt"
- Use below code in the newly created environment.
from transformers import T5Tokenizer,BertForSequenceClassification
import torch
tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base')
japanese_review_text = "履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)"
encoded_data = tokenizer.batch_encode_plus([japanese_review_text ],
add_special_tokens=True,
return_attention_mask=True,
padding=True,
max_length=200,
return_tensors='pt',
truncation=True)
input_ids = encoded_data['input_ids']
attention_masks = encoded_data['attention_mask']
model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn",
num_labels=2,
output_attentions=False,
output_hidden_states=False)
model.load_state_dict(torch.load('reviewSentiments_jp.pt',map_location=torch.device('cpu')))
inputs = { 'input_ids': input_ids,
'attention_mask': attention_masks}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
logits = logits.detach().cpu().numpy()
scores = 1 / (1 + np.exp(-1 * logits))
result = {"TEXT (文章)": jp_review_text,'NEGATIVE (ネガティブ)': scores[0][0], 'POSITIVE (ポジティブ)': scores[0][1]}
Output:
{'TEXT (文章)': '履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)', 'NEGATIVE (ネガティブ)': 0.023672901, 'POSITIVE (ポジティブ)': 0.96819043}
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.