File size: 14,120 Bytes
e30bf68 9b5886f e30bf68 9b5886f e30bf68 9b5886f 67a9aa7 9b5886f 67a9aa7 e30bf68 9b5886f e30bf68 35da3af 67a9aa7 e30bf68 35da3af e30bf68 35da3af e30bf68 35da3af e30bf68 67a9aa7 e30bf68 9b5886f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
---
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_button_content: Acknowledge license
tags:
- conversational
language:
- ar
- en
---
# SILMA AI
SILMA.AI is a leading Generative AI startup dedicated to empowering Arabic speakers with state-of-the-art AI solutions.
## ๐ Our Flagship Model: SILMA 1.0 ๐
* **SILMA 1.0** is the **TOP-RANKED** open-weights Arabic LLM with an impressive **9 billion parameter size**, surpassing models that are over seven times larger. ๐
*
## What makes SILMA exceptional?
* SIMLA is a small language model outperforming 72B models in most arabic language tasks, thus more practical for business use-cases
* SILMA is built on the strong foundational models of Google Gemma, giving you the best of both worlds
* SILMA is an open-weight model free to use in accordance with our open license
## ๐ฅ Our Team
We are a team of seasoned **Arabic AI experts** who understand the nuances of the language and cultural considerations, enabling us to build solutions that truly resonate with Arabic users.
**Authors**: [silma.ai](https://silma.ai)
### Usage
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
```sh
pip install -U transformers
```
Then, copy the snippet from the section that is relevant for your usecase.
#### Running with the `pipeline` API
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="silma-ai/SILMA-9B-Instruct-v0.8",
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda", # replace with "mps" to run on a Mac device
)
messages = [
{"role": "user", "content": "ุงูุชุจ ุฑุณุงูุฉ ุชุนุชุฐุฑ ูููุง ูู
ุฏูุฑู ูู ุงูุนู
ู ุนู ุงูุญุถูุฑ ุงูููู
ูุฃุณุจุงุจ ู
ุฑุถูุฉ."},
]
outputs = pipe(messages, max_new_tokens=256)
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
print(assistant_response)
# ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู ูุจุฑูุงุชูุ ุฃูุฏู ุฃู ุฃุนุชุฐุฑ ุนู ุนุฏู
ุงูุญุถูุฑ ุฅูู ุงูุนู
ู ุงูููู
ุจุณุจุจ ู
ุฑุถู. ุฃุดูุฑูู
ุนูู ุชููู
ูู
.
```
#### Running the model on a single / multi GPU
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
input_text = "ุฃููู
ุง ุฃุฎู ูุฒูุง, ูููู ู
ู ุงูุญุฏูุฏ ุฃู
ูููู ู
ู ุงููุทูุ"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))
# ููุงูู
ุง ูู ููุณ ุงููุฒู.
```
You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
```python
messages = [
{"role": "user", "content": "ุงูุชุจ ููุฏ ุจุงูุซูู ูุชูููุฏ ู
ุชุณูุณูุฉ ุฃุฑูุงู
ุฒูุฌูุฉ."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
# def generate_even_numbers(n):
# """
# This function generates a list of even numbers from 1 to n.
#
# Args:
# n: The upper limit of the range.
#
# Returns:
# A list of even numbers.
# """
# return [i for i in range(1, n + 1) if i % 2 == 0]
# Example usage
# n = 10
# even_numbers = generate_even_numbers(n)
# print(f"The first {n} even numbers are: {even_numbers}")
```
#### Quantized Versions through `bitsandbytes`
<details>
<summary>
Using 8-bit precision (int8)
</summary>
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
)
input_text = "ุงุฐูุฑ ุฎู
ุณ ุงููุงุน ููุงูู ุจูุง ูุณุจ ุนุงููุฉ ู
ู ููุชุงู
ูู ุฌ."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))
# ุงูููู
ููุ ุงูุจุฑุชูุงูุ ุงูู
ูุฒุ ุงูููููุ ุงููุฑุงููุฉ
```
</details>
<details>
<summary>
Using 4-bit precision
</summary>
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
)
input_text = "ูู ุฃู ุนุงู
ุชููู ุตูุงุญ ุงูุฏูู ุงูุฃููุจูุ"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))
# 1193
```
</details>
#### Advanced Usage
<details>
<summary>
Torch compile
</summary>
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
inference of PyTorch modules. The Silma model can be run up to 6x faster by leveraging torch compile.
Note that two warm-up steps are required before the full inference speed is realised:
```python
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import AutoTokenizer, Gemma2ForCausalLM
from transformers.cache_utils import HybridCache
import torch
torch.set_float32_matmul_precision("high")
# load the model + tokenizer
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = Gemma2ForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
model.to("cuda")
# apply the torch compile transformation
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
# pre-process inputs
input_text = "ู
ู ุงูุฑุฆูุณ ุงูุฐู ุชููู ุงูู
ูุตุจ ูู ุฃู
ุฑููุง ุจุนุฏ ุฏููุงูุฏ ุชุฑุงู
ุจุ"
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
prompt_length = model_inputs.input_ids.shape[1]
# set-up k/v cache
past_key_values = HybridCache(
config=model.config,
max_batch_size=1,
max_cache_len=model.config.max_position_embeddings,
device=model.device,
dtype=model.dtype
)
# enable passing kv cache to generate
model._supports_cache_class = True
model.generation_config.cache_implementation = None
# two warm-up steps
for idx in range(2):
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
past_key_values.reset()
# fast run
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# ุฌู ุจุงูุฏู
```
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
</details>
### Chat Template
The instruction-tuned models use a chat template that must be adhered to for conversational use.
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,)
chat = [
{ "role": "user", "content": "ู
ุง ุงุดูุฑ ุงุทุงุฑุงุช ุงูุนู
ู ูู ุงูุจุงูุซูู ูุจูุงุก ูู
ุงุฐุฌ ุงูุฐูุงุก ุงูุงุตุทูุงุนูุ" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
At this point, the prompt contains the following text:
```
<bos><start_of_turn>user
ู
ุง ุงุดูุฑ ุงุทุงุฑุงุช ุงูุนู
ู ูู ุงูุจุงูุซูู ูุจูุงุก ูู
ุงุฐุฌ ุงูุฐูุงุก ุงูุงุตุทูุงุนูุ<end_of_turn>
<start_of_turn>model
```
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
the `<end_of_turn>` token.
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
chat template.
After the prompt is ready, generation can be performed like this:
```python
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
print(tokenizer.decode(outputs[0]))
```
### Inputs and outputs
* **Input:** Text string, such as a question, a prompt, or a document to be
summarized.
* **Output:** Generated Arabic or English text in response to the input, such
as an answer to a question, or a summary of a document.
### Citation
```none
@article{silma_01_2024,
title={Silma},
url={https://www.silma.ai},
publisher={Silma},
author={Silma Team},
year={2024}
}
```
## Usage and Limitations
These models have certain limitations that users should be aware of.
### Intended Usage
Open Large Language Models (LLMs) have a wide range of applications across
various industries and domains. The following list of potential uses is not
comprehensive. The purpose of this list is to provide contextual information
about the possible use-cases that the model creators considered as part of model
training and development.
* Content Creation and Communication
* Text Generation: These models can be used to generate creative text formats
such as poems, scripts, code, marketing copy, and email drafts.
* Chatbots and Conversational AI: Power conversational interfaces for customer
service, virtual assistants, or interactive applications.
* Text Summarization: Generate concise summaries of a text corpus, research
papers, or reports.
* Research and Education
* Natural Language Processing (NLP) Research: These models can serve as a
foundation for researchers to experiment with NLP techniques, develop
algorithms, and contribute to the advancement of the field.
* Language Learning Tools: Support interactive language learning experiences,
aiding in grammar correction or providing writing practice.
* Knowledge Exploration: Assist researchers in exploring large bodies of text
by generating summaries or answering questions about specific topics.
### Limitations
* Training Data
* The quality and diversity of the training data significantly influence the
model's capabilities. Biases or gaps in the training data can lead to
limitations in the model's responses.
* The scope of the training dataset determines the subject areas the model can
handle effectively.
* Context and Task Complexity
* LLMs are better at tasks that can be framed with clear prompts and
instructions. Open-ended or highly complex tasks might be challenging.
* A model's performance can be influenced by the amount of context provided
(longer context generally leads to better outputs, up to a certain point).
* Language Ambiguity and Nuance
* Natural language is inherently complex. LLMs might struggle to grasp subtle
nuances, sarcasm, or figurative language.
* Factual Accuracy
* LLMs generate responses based on information they learned from their
training datasets, but they are not knowledge bases. They may generate
incorrect or outdated factual statements.
* Common Sense
* LLMs rely on statistical patterns in language. They might lack the ability
to apply common sense reasoning in certain situations.
### Ethical Considerations and Risks
The development of large language models (LLMs) raises several ethical concerns.
In creating an open model, we have carefully considered the following:
* Bias and Fairness
* LLMs trained on large-scale, real-world text data can reflect socio-cultural
biases embedded in the training material. These models underwent careful
scrutiny, input data pre-processing described and posterior evaluations
reported in this card.
* Misinformation and Misuse
* LLMs can be misused to generate text that is false, misleading, or harmful.
* Guidelines are provided for responsible use with the model, see the
[Responsible Generative AI Toolkit][rai-toolkit].
* Transparency and Accountability:
* This model card summarizes details on the models' architecture,
capabilities, limitations, and evaluation processes.
* A responsibly developed open model offers the opportunity to share
innovation by making LLM technology accessible to developers and researchers
across the AI ecosystem.
Risks identified and mitigations:
* Perpetuation of biases: It's encouraged to perform continuous monitoring
(using evaluation metrics, human review) and the exploration of de-biasing
techniques during model training, fine-tuning, and other use cases.
* Generation of harmful content: Mechanisms and guidelines for content safety
are essential. Developers are encouraged to exercise caution and implement
appropriate content safety safeguards based on their specific product policies
and application use cases.
* Privacy violations: Models were trained on data filtered for removal of PII
(Personally Identifiable Information). Developers are encouraged to adhere to
privacy regulations with privacy-preserving techniques. |